Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

A Novel Direct Yaw Moment Control System for Autonomous Vehicle

2018-08-07
2018-01-1594
Although autonomous driving technology has become an emerging research focus, safety is still the most crucial concern when autonomous vehicles leave research laboratory and enter public traffic. Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment, is an important system to ensure the driving stability of vehicle under extreme conditions. Traditional DYC system must need to take into account driver’s intention and vehicle dynamics. However, for autonomous vehicle, no human is involved in driving process, and enforcing traditional DYC system may conflict with the demands of the desired path. Therefore, in this paper, a novel DYC system for autonomous vehicle is proposed to simultaneously suppress lateral path tracking deviation while maintaining autonomous vehicle stability at or close to the driving limits. In the hardware aspect, an integrated-electro-hydraulic brake (IEHB) actuator scheme is adopted.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Journal Article

Network Scheduling for Distributed Controls of Electric Vehicles Considering Actuator Dynamic Characteristics

2017-03-28
2017-01-0019
Electric vehicle (EV) has been regarded as not only an effective solution for environmental issues but also a more controllable and responsible device to driving forces with electric motors and precise torque measurement. For electric vehicle equipped with four in-wheel motors, its tire longitudinal forces can be generated independently and individually with fully utilized tire adhesion at each corner. This type of the electric vehicles has a distributed drive system, and often regarded as an over-actuated system since the number of actuators in general exceeds the control variables. Control allocation (CA) is often considered as an effective means for the control of over-actuated systems. The in-vehicle network technology has been one of the major enablers for the distributed drive systems. The vehicle studied in this research has an electrohydraulic brake system (EHB) on front axle, while an electromechanical brake system (EMB) on rear axle.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Journal Article

Evaluation and Design of Electric/Electronic-Architectures of the Electric Vehicle

2016-06-17
2016-01-9143
The evaluation of electric vehicle electric/electronic-architectures (e/e-architectures) is the main topic of this paper. The electric vehicle is chosen as an example system, as it reflects the typical challenges of modern vehicle e/e-architecture development. The development of modern automotive technology also presents another important trend - vehicle electrification. New electric and electronic devices are developed and required in the automotive industry and control commands are exchanged by electric and electronic ones. The energy storage systems (ESS) properly reflect the above two aspects. The energy storage device also takes care of the peak loads, the high load dynamics, and it utilizes the braking energy in order to increase the efficiency. In this work a Li-ion battery and an ultracapacitor both are considered as energy storage devices.
Journal Article

Vehicle Automatic Lane Changing based on Model Predictive Control

2016-04-05
2016-01-0142
In this paper, we present a model predictive controller for the autonomous vehicle lane-change maneuver. Firstly, an optimal trajectory is generated by polynomial, then, utilize it as the reference trajectory of the controller. It is well known that vehicle with nonholonomic constraints can not be feedback stabilized through continuously differentiable, time-invariant control laws. One of the advantages of MPC is the ability to handle constraints in a straightforward way. Quadratic programming is used to solve a linear MPC by successive linearization of an error model of the vehicle. Due to that the vehicle dynamics model is used, in order to prevent optimal solution cannot be obtained within the prescribed time, the relaxation factor in the objective function.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Technical Paper

Development of Battery/Supercapacitor Hybrid Energy Management System for Electric Vehicles Based on a Power Sharing Strategy Using Terrain Information

2016-04-05
2016-01-1242
Since road electric vehicles typically require a significantly variable and random load power demand in response to traffic conditions, such as frequent sequences of acceleration and deceleration and uphill followed by downhill runs. In this context, the energy management system of electric vehicle must ensure an effective power distribution between battery and supercapacitor to satisfy load demand. In this paper, the power management control strategy of hybrid energy storage system is developed by introducing terrain information to optimize system efficiency and battery lifetime. In this presented research, we aim at developing a power management control strategy considering the influence of the terrain information on system efficiency and battery lifetime.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Technical Paper

MPC-Based Trajectory Tracking Control for Intelligent Vehicles

2016-04-05
2016-01-0452
In this paper, a model predictive control (MPC) based trajectory tracking scheme utilizing steering wheel and braking or acceleration pedal is proposed for intelligent vehicles. The control objective is to track a desired trajectory which is obtained from the trajectory planner. The proposed control is based on a simplified third-order vehicle model, which consists of longitudinal vehicle dynamics along with a commonly used bicycle model. A nonlinear model predictive control (NMPC) is adopted in order to follow a given path by controlling front steering, braking and traction, while fulfilling various physical and design constraints. In order to reduce the computational burden, the NMPC is converted to a linear time-varying (LTV) MPC based on successive online linearization of the nonlinear system model. Two different test conditions have been used to verify the effectiveness of the proposed approaches through simulations using Matlab and CarSim.
Journal Article

Power-Balance and Wavelet-Transform Based Power Management of Battery-Supercapacitor Hybrid System for Electric Vehicles

2015-04-14
2015-01-0253
Power management of a hybrid energy storage system (HESS) with battery and supercapacitor(SC) is of critical importance for electric vehicles to achieve good driving performance, long traveling range and high energy efficiency. Due to the great differences in dynamic characteristics between battery and supercapacitor, and the complexity of a HESS, proper power management strategy between battery and supercapacitor remains to be challenging. The proposed research in this paper is to develop a power-balance and wavelet-transform based strategy for power distribution in a way such that each device can be utilized optimally. The transient dynamics is first decoupled via wavelet-transform algorithm while the power-balance algorithm is employed to improve system robustness based on the desired velocity-SOC relationship and a fuzzy logical controller. Finally some simulations have been conducted with results shown that the proposed strategy is valid and effective.
Journal Article

Allocation-Based Control with Actuator Dynamics for Four-Wheel Independently Actuated Electric Vehicles

2015-04-14
2015-01-0653
This paper proposes a novel allocation-based control method for four-wheel independently actuated electric vehicles. In the proposed method, both actuator dynamics and input/output constraints are fully taken into consideration in the control design. First, the actuators are modeled as first-order dynamic systems with delay. Then, the control allocation is formulated as an optimization problem, with the primary objective of minimizing errors between the actual and desired control outputs. Other objectives include minimizing the power consumption and the slew rate of the actuator outputs. As a result, this leads to frequency-dependent allocation that reflects the bandwidth of each actuator. To solve the optimization problem, an efficient numerical algorithm is employed. Finally the proposed control allocation method is implemented to control a four-wheel independently actuated electric vehicle.
Journal Article

Allocation-Based Fault Tolerant Control for Electric Vehicles with X-by-Wire

2014-04-01
2014-01-0866
This paper proposed a novel fault-tolerant control method based on control allocation via dynamic constrained optimization for electric vehicles with XBW systems. The total vehicle control command is first derived based on interpretation on driver's intention as a set of desired vehicle body forces, which is further dynamically distributed to the control command of each actuator among vehicle four corners. A dynamic constrained optimization method is proposed with the cost function set to be a linear combination of multiple control objectives, such that the control allocation problem is transformed into a linear programming formulation. An analytical yet explicit solution is then derived, which not only provides a systematic approach in handling the actuation faults, but also is efficient and real-time feasible for in-vehicle implementation. The simulation results show that the proposed method is valid and effective in maintaining vehicle operation as expected even with faults.
Technical Paper

Development of Active Control Strategy for Flat Tire Vehicles

2014-04-01
2014-01-0859
This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
X