Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact of Deposit Control Additives on Particulate Emissions and Fuel Consumption in Pre-used Vehicles with Gasoline Direct Injection Engines

2024-04-09
2024-01-2127
Injector nozzle deposits can have a profound effect on particulate emissions from vehicles fitted with Gasoline Direct Injection (GDI) engines. Several recent publications acknowledge the benefits of using Deposit Control Additives (DCA) to maintain or restore injector cleanliness and in turn minimise particulates, but others claim that high levels of DCA could have detrimental effects due to the direct contribution of DCA to particulates, that outweigh the benefits of injector cleanliness. Much of the aforementioned work was conducted in laboratory scenarios with model fuels. In this investigation a fleet of 7 used GDI vehicles were taken from the field to determine the net impact of DCAs on particulates in real-world scenarios. The vehicles tested comprised a range of vehicles from different manufacturers that were certified to Euro 5 and Euro 6 emissions standards.
Technical Paper

Vehicle Mass and Road Gradient Estimation by Series Kalman Filter and 3-Axis Accelerometer for Real-World Application

2023-10-31
2023-01-1677
For modern vehicle development, on-board vehicle Mass and road Gradient Estimation (MGE) can offer great benefit to many sub-systems on the vehicle, such as vehicle control system, transmission control system, and active safety system etc. However, there are still several challenges that need to be solved. Firstly, thanks to good accuracy, reliability, and robustness, regression analysis-based approaches: Recursive Least Squares (RLS) and Kalman Filter (KF) are very popular for MGE, but the trade-off between estimator’s accuracy and converge time is challenging. Furthermore, depending on vehicle and powertrain types, the implementation of MGE function could be very different. It is desired to have a structured approach for various vehicle applications’ MGE development. Lastly, good reliability of MGE does not always satisfy for complicated real-world driving maneuvers and road conditions.
Technical Paper

Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021-09-22
2021-26-0356
Ethanol fuel blends with gasoline for spark ignition (SI) internal combustion engines are widely used on account of their advantages in terms of fuel economy and emissions reduction potential. The focus of this paper is to study the effects of these blends on combustion characteristics such as in-cylinder pressure profiles, gas-phase emissions (e.g., unburned hydrocarbons, NOx) and particulates (e.g., particulate matter and particle number) using both measurement campaigns and digital engineering workflows. Nineteen load-speed operating points in a 1L 3-cylinder GDI SI engine were measured and modelled. The measurements for in-cylinder pressure and emissions were repeated at each operating point for three types of fuel: gasoline (E0, 0% by volume of ethanol blend), E10 (10 % by volume of ethanol blend) and E20 (20% by volume of ethanol blend).
Technical Paper

Sensitivity Study of Battery Thermal Response to Cell Thermophysical Parameters

2021-04-06
2021-01-0751
Lithium-ion batteries (LiBs) have been widely used in electrified vehicles, and the battery thermal management (BTM) system is needed to maintain the temperature that is critical to battery performance, safety, and health. Conventionally, three-dimensional battery thermal models are developed at the early stage to guide the design of the BTM system, in which battery thermophysical parameters (radial thermal conductivity, axial thermal conductivity, and specific heat capacity) are required. However, in most literature, those parameters were estimated with greatly different values (up to one order of magnitude). In this paper, an investigation is carried out to evaluate the magnitude of the influence of those parameters on the battery simulation results. The study will determine if accurate measurements of battery thermophysical parameters are necessary.
Technical Paper

Driving Cycle Based Control and Calibration for a Turbocharged SI Engine with Low Pressure EGR System

2020-09-15
2020-01-2015
Low pressure cooled EGR (LPEGR) for spark ignition (SI) engines is known to be one of the key technologies to benefit fuel consumption owing to lower pumping loss at part load, knock suppression capability and extended stoichiometric operating range thanks to combustion cooling effect. In order to implement this technology to industrialised application with the optimal performance efficiently and robustly, several challenges need to be solved, especially the EGR estimation accuracy and transport delay estimation accuracy during transient. And these challenges could be more complex on a turbocharged SI engine due to the much longer induction system, and more complex air path model due to the introduction of turbine, compressor and dump valve. This paper describes the control and calibration method for a turbocharged LPEGR engine, and the validation result in Worldwide harmonized Light vehicles Test Cycles (WLTC).
Technical Paper

Experimental Investigation of Injection Pressure Fluctuations Employing Alternative Fuels

2020-09-15
2020-01-2122
Injection pressure oscillations are proven to determine considerable deviations from the expected mass flow rate, leading to the jet velocities non-uniformity, which in turn implies the uneven spatial distribution of A/F ratio. Furthermore, once the injector is triggered, these oscillations might lead the rail pressure to experience a decreasing stage, to the detriment of spray penetration length, radial propagation and jet break-up timing. This has urged the research community to develop models predicting injection-induced pressure fluctuations within the rail. Additionally, several devices have been designed to minimize and eliminate such fluctuations. However, despite the wide literature dealing with the injection-induced pressure oscillations, many aspects remain still unclear. Moreover, the compulsory compliance with environmental regulations has shifted focus onto alternative fuels, which represent a promising pathway for sustainable vehicle mobility.
Technical Paper

Numerical Simulations of the Effect of Cold Fuel Temperature on In-Nozzle Flow and Cavitation Using a Model Injector Geometry

2020-09-15
2020-01-2116
In the present study, Large Eddy Simulations (LES) have been performed with a 3D model of a step nozzle injector, using n-pentane as the injected fluid, a representative of the high-volatility components in gasoline. The influence of fuel temperature and injection pressure were investigated in conditions that shed light on engine cold-start, a phenomenon prevalent in a number of combustion applications, albeit not extensively studied. The test cases provide an impression of the in-nozzle phase change and the near-nozzle spray structure across different cavitation regimes. Results for the 20oC fuel temperature case (supercavitating regime) depict the formation of a continuous cavitation region that extends to the nozzle outlet. Collapse-induced pressure wave dynamics near the outlet cause a transient entrainment of air from the discharge chamber towards the nozzle.
Technical Paper

Study of Effects of Deposit Formation on GDi Injector and Engine Performance

2020-09-15
2020-01-2099
Gasoline Direct Injection (GDI) vehicles now make up the majority of European new car sales and a significant share of the existing car parc. Despite delivering measurable engine efficiency benefits, GDI fuel systems are not without issues. Fuel injectors are susceptible to the formation of deposits in and around the injector nozzles holes. It is widely reported that these deposits can affect engine performance and that different fuels can alleviate the buildup of those deposits. This project aims to understand the underlying mechanisms of how deposit formation ultimately leads to a reduction in vehicle performance. Ten GDI fuel injectors, with differing levels of coking were taken from engine testing and consumer vehicles and compared using a range of imaging and engine tests. At the time of writing, a new GDI engine test is being developed by the Co-ordinating European Council (CEC) to be used by the fuel and fuel additive industry.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Is the “K Value” of an Engine Truly Fuel Independent?

2020-04-14
2020-01-0615
The octane appetite of an engine is frequently characterised by the so-called K value. It is usually assumed that K is dependent only on the thermodynamic conditions in the engine when knock occurs. In this work we test this hypothesis: further analysis was conducted on experimental results from SAE 2019-01-0035 in which a matrix of fuels was tested in a single cylinder engine. The fuels consisted of a relatively small number of components, thereby simplifying the analysis of the chemical kinetic proprieties. Through dividing the original fuel matrix into subsets, it was possible to explore the variation of K value with fuel properties. It was found that K value tends to increase slightly with RON. The explanation for this finding is that higher RON leads to advanced ignition timing (i.e. closer to MBT conditions) and advanced ignition timing results in faster combustion because of the higher pressures and temperatures reached in the thermodynamic trajectory.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Technical Paper

Optical Sensor for the Needle Lift Detection in the Common Rail Injector

2019-09-09
2019-24-0193
The detection of needle displacement within a Common Rail injector is a crucial step to suitably characterize the behaviour of an injector. The needle motion is traditionally measured by means of an eddy current sensor. Apart from its high cost, scientific literature highlights its drawbacks, such as the introduction of mechanical weakness on the control piston as well as the electromagnetic disturbance affecting data acquisition. In order to provide an improved quality of signal, other solutions have been developed, which require a large number of components, leading to increased layout complexity. This layout can create a packing issue while mounting the sensor on the test rig. A novel sensor (UK Patent Application No.1819731.9) using fibre optic cable has been designed and built to overcome the limitations typically associated with needle displacement transducers.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Technical Paper

Investigation of Late Stage Conventional Diesel Combustion - Effect of Additives

2018-09-10
2018-01-1787
The accepted model of conventional diesel combustion [1] assumes a rich premixed flame slightly downstream of the maximum liquid penetration. The soot generated by this rich premixed flame is burnt out by a subsequent diffusion flame at the head of the jet. Even in situations in which the centre of combustion (CA50) is phased optimally to maximize efficiency, slow late stage combustion can still have a significant detrimental impact on thermal efficiency. Data is presented on potential late-stage combustion improvers in a EURO VI compliant HD engine at a range of speed and load points. The operating conditions (e.g. injection timings, EGR levels) were based on a EURO VI calibration which targets 3 g/kWh of engine-out NOx. Rates of heat release were determined from the pressure sensor data. To investigate late stage combustion, focus was made on the position in the cycle at which 90% of the fuel had combusted (CA90). An EN590 compliant fuel was tested.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Technical Paper

Flame Kernel Growth and Propagation in an Optical Direct Injection Engine Using Laser Ignition

2017-10-08
2017-01-2243
The demand for more efficient and clean engines have prompted the research and development of new engine technologies. Automotive engines expected to run with leaner mixtures and higher compression ratios. Lean burn is effective to increase fuel economy whilst reducing emissions but unreliable ignition of the lean mixtures by the conventional spark plug is one of the problems which causes concerns to the engine designers. Laser ignition is a promising technology and holds many benefits over the spark ignition because it can extend the ignitability of lean mixtures with flexibility of the ignition location and absence of electrode degradation for improved engine performance with lean burn. In this study, high-speed photography is used to investigate the flame kernel growth and propagation in an optical direct injection engine using laser ignition by an Nd:YAG laser.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

Octane Requirement and Efficiency in a Fleet of Modern Vehicles

2017-03-28
2017-01-0810
In light of increasingly stringent CO2 emission targets, Original Equipment Manufacturers (OEM) have been driven to develop engines which deliver improved combustion efficiency and reduce energy losses. In spark ignition engines one strategy which can be used to reach this goal is the full utilization of fuel octane number. Octane number is the fuel´s knock resistance and is characterized as research octane number (RON) and motor octane number (MON). Engine knock is caused by the undesired self-ignition of the fuel air mixture ahead of the flame front initiated by the spark. It leads to pressure fluctuations that can severely damage the engine. Modern vehicles utilize different strategies to avoid knock. One extreme strategy assumes a weak fuel quality and, to protect the engine, retards the spark timing at the expense of combustion efficiency. The other extreme carefully detects knock in every engine cycle and retards the spark timing only when knock is detected.
Journal Article

Impact of Fuel Sensitivity (RON-MON) on Engine Efficiency

2017-03-28
2017-01-0799
Modern spark ignition engines can take advantage of better fuel octane quality either towards improving acceleration performance or fuel economy via an active ignition management system. Higher fuel octane allows for spark timing advance and consequently higher torque output and higher engine efficiency. Additionally, engines can be designed with higher compression ratios if a higher anti-knock quality fuel is used. Due to historical reasons, Research Octane (RON) and Motor Octane Number (MON) are the metrics used to characterize the anti-knock quality of a fuel. The test conditions used to compute RON and MON correlated well with those in older engines designed about 20 years ago. But the correlation has drifted considerably in the recent past due to advances in engine infrastructures mainly governed by stringent fuel economy and emission standards.
Journal Article

Vapour Space Flammability Considerations for Gasoline Compression Ignition Vehicles Operating on “Dieseline” Blends.

2016-10-17
2016-01-2266
Gasoline Compression Ignition (GCI) has been identified as a technology which could give both high efficiency and relatively low engine-out emissions. The introduction of any new vehicle technology requires widespread availability of appropriate fuels. It would be ideal therefore if GCI vehicles were able to operate using the standard grade of gasoline that is available at the pump. However, in spite of recent progress, operation at idle and low loads still remains a formidable challenge, given the relatively low autoignition reactivity of conventional gasoline at these conditions. One conceivable solution would be to use both diesel and gasoline, either in separate tanks or blended as a single fuel (“dieseline”). However, with this latter option, a major concern for dieseline would be whether a flammable mixture could exist in the vapour space in the fuel tank.
X