Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

Evaluation of swirl ratio effects on the flow fields using Particle Image Velocimetry and Flame image Velocimetry in a small-bore optical compression-ignition engine

2023-09-29
2023-32-0061
This study applies high-speed particle image velocimetry (HS-PIV) and flame image velocimetry (HS-FIV) to show flow fields under the effect of varied swirl ratios in a small-bore optical compression-ignition engine. The base swirl ratio and maximum swirl ratio conditions were applied to investigate structures, magnitude and turbulence distribution of the in-cylinder flow as well as the flow within the flame. For each swirl ratio, 100 individual cycles were measured for PIV analysis at motoring conditions and then another 100 cycles for FIV analysis at firing conditions. The derived flow fields were ensemble averaged to show flow structure evolution while the spatial filtering method was applied to extract high-frequency flow component for the analysis of turbulence distributions. The results showed that the intake air flow generates undefined, chaotic flow fields, which are followed by a gradual production of an asymmetric swirl flow.
Technical Paper

Vortex Development and Heat Release Enhancement in Diesel Spray Flame by Inversed-Delta Injection Rate Shaping Using TAIZAC Injector

2021-09-05
2021-24-0037
The enhancement of vortex development, fuel-air mixing and heat release in diesel spray flame by inversed-delta injection rate shaping, having been predicted via LES simulation with detailed chemical kinetics, is experimentally confirmed for the first time. Newly developed 3-injector TAIZAC (TAndem Injector Zapping ACtivation) injector realizing aggressive inversed-delta injection rate shaping was used for single-shot combustion experiments in a constant volume combustion vessel. Simultaneous high-speed (120,000fps) and high-resolution (1,280 x 704 pixels) laser schlieren and UV OH* chemiluminescence imaging combined with subsequent Flame Imaging Velocimetry (FIV) analysis was employed to elucidate the correlation between vortex development and enhanced heat release.
Technical Paper

A Numerical Investigation of Mixture Formation and Combustion Characteristics of a Hydrogen-Diesel Dual Direct Injection Engine

2021-04-06
2021-01-0526
A hydrogen-diesel dual direct injection (H2DDI) combustion strategy in a compression-ignition engine is investigated numerically, reproducing the configuration of previous experimental investigations. These experiments demonstrated the potential of up to 50% diesel substitution by hydrogen while maintaining high engine efficiency; nevertheless, the emission of NOx increased compared with diesel operation and was strongly dependent on the hydrogen injection timing. This implies the efficiency and NOx emission are closely associated with hydrogen charge stratification; however, the underlying mechanisms are not fully understood. Aiming to highlight the hydrogen injection-timing influence on hydrogen/air mixture stratification and engine performance, the present study numerically investigates the mixture formation and combustion process in the H2DDI engine concept using Converge, a three-dimensional fluid dynamics simulation code.
Journal Article

Optimisation of Image Processing Parameters for Flame Image Velocimetry (FIV) Measurement in a Single-Cylinder, Small-Bore Optical Diesel Engine

2019-04-02
2019-01-0719
High-speed soot luminosity movies are widely used to visualise flame development in optical diesel engines thanks to its simple setup and relatively low cost. Recent studies demonstrated the high-speed soot luminosity movies are not only effective in showing the overall distribution and temporal evolution of sooting flames but also flow fields within the flame through the application of combustion (or flame) image velocimetry. The present study aims to improve this imaging technique by systematically evaluating key image processing parameters based on high-speed soot luminosity movies obtained from a single-cylinder, small-bore optical diesel engine. The raw soot luminosity movies are processed using PIVlab - a Matlab-based open-source code widely used for particle image velocimetry (PIV) applications.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
Technical Paper

Multiple Injection Strategy Investigation for Well-Mixed Operation in an Optical Wall-Guided Spark-Ignition Direct-Injection (WG-SIDI) Engine through Flame Shape Analysis

2016-10-17
2016-01-2162
One major drawback of spark-ignition direct-injection (SIDI) engines is increased particulate matter (PM) and unburned hydrocarbon emissions at high load, due to wall wetting and a reduction in available air/fuel mixing time when compared to port-fuel injection (PFI). It is therefore necessary to understand the mechanics behind injection strategies which are capable of reducing these emissions while also maintaining the performance and efficiency of the engine. This study investigates the effect of varying the number fuel injection events and equivalence ratio on the operation of a wall-guided SIDI (WG-SIDI) engine. Of particular interest is how increased mixture homogeneity achieved by the double injection events impacts in-cylinder conditions and flame development.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Journal Article

A Comparative Analysis on Engine Performance of a Conventional Diesel Fuel and 10% Biodiesel Blends Produced from Coconut Oils

2015-09-06
2015-24-2489
This paper presents engine performance and emissions of coconut oil-derived 10% biodiesel blends in petroleum diesel demonstrating simultaneous reduction of smoke and NOx emissions and increased brake power. The experiments were performed in a single-cylinder version of a light-duty diesel engine for three different fuels including a conventional diesel fuel and two B10 fuels of chemical-catalyst-based methyl-ester biodiesel (B10mc) and biological-catalyst-based ethyl-ester biodiesel (B10eb). The engine tests were conducted at fixed speed of 2000 rpm and injection pressure of 130 MPa. In addition to the fuel variation, the injection timing and rate of exhaust gas recirculation (EGR) were also varied because they impact the combustion and thus the efficiency and emissions significantly.
Technical Paper

A Numerical Study of the Influence of Different Operating Conditions on the Combustion Development in an Automotive-Size Diesel Engine

2015-09-01
2015-01-1852
In this paper, numerical simulations of an automotive-size optical diesel engine have been conducted employing the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model and a reduced n-heptane chemical mechanism implemented in OpenFOAM. The current paper builds on a previous work where the model has been validated for the same engine using optical diagnostic data. The present study investigates numerically the influence of different operating conditions - relevant for modern diesel engines - on the mixture formation development under non-reactive conditions as well as low- and high-temperature ignition behaviour and flame evolution in the presence of strong jet-wall interactions typically encountered in automotive-size diesel engines. Also, emissions of CO and unburned hydrocarbons (UHC) are considered.
Journal Article

Injection Pressure Effects on the Flame Development in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-0791
The impact of fuel injection pressure on the development of diesel flames has been studied in a light-duty optical engine. Planer laser-induced fluorescence imaging of fuel (fuel-PLIF) and hydroxyl radicals (OH-PLIF) as well as line-of-sight integrated chemiluminescence imaging of cool-flame and OH* were performed for three different common-rail pressures including 70, 100, and 130 MPa. The injection timing and injected fuel mass were held constant resulting in earlier end of injection for higher injection pressure. The in-cylinder pressure was also measured to understand bulk-gas combustion conditions through the analysis of apparent heat release rate. From the cool-flame images, it is found that the low-temperature reaction starts to occur in the wall-interacting jet head region where the fuel-air mixing could be enhanced due to a turbulent ring-vortex formed during jet-wall interactions.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
Journal Article

Load Limit Extension in Pre-Mixed Compression Ignition Using a 2-Zone Combustion System

2015-04-14
2015-01-0860
A novel 2-zone combustion system was examined at medium load operation consistent with loads in the light duty vehicle drive cycle (7.6 bar BMEP and 2600 rev/min). Pressure rise rate and noise can limit the part of the engine map where pre-mixed combustion strategies such as HCCI or RCCI can be used. The present 2-zone pistons have an axial projection that divides the near TDC volume into two regions (inner and outer) joined by a narrow communication channel defined by the squish height. Dividing the near TDC volume provides a means to prepare two fuel-air mixtures with different ignition characteristics. Depending on the fuel injection timing, the reactivity of the inner or outer volume can be raised to provide an ignition source for the fuel-air mixture in the other, less reactive volume. Multi-dimensional CFD modeling was used to design the 2-zone piston geometry examined in this study.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions

2014-04-01
2014-01-1256
One in-cylinder strategy for reducing soot emissions from diesel engines while maintaining fuel efficiency is the use of close-coupled post injections, which are small fuel injections that follow the main fuel injection after a short delay. While the in-cylinder mechanisms of diesel combustion with single injections have been studied extensively and are relatively well understood, the in-cylinder mechanisms affecting the performance and efficacy of post injections have not been clearly established. Here, experiments from a single-cylinder heavy-duty optical research engine incorporating close- coupled post injections are modeled with three dimensional (3D) computational fluid dynamics (CFD) simulations. The overall goal is to complement experimental findings with CFD results to gain more insight into the relationship between post-injections and soot. This paper documents the first stage of CFD results for simulating and analyzing the experimental conditions.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

2014-04-01
2014-01-1302
Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
X