Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Combustion and Emission Characteristics of Fischer-Tropsch and Standard Diesel Fuel in a Single-Cylinder Diesel Engine

2001-09-24
2001-01-3517
The emissions reduction of Fischer-Tropsch (FT) diesel fuel has been demonstrated in several recent publications in both laboratory engine testing and in-use vehicle testing. Reduced emission levels have been attributed to several chemical and physical characteristics of the FT fuels including reduced density, ultra-low sulfur levels, low aromatic content and high cetane rating. Some of the effects of these attributes on the combustion characteristics in diesel engines have only recently been documented. In this study, a Ricardo Proteous, single-cylinder, 4-stroke DI engine is instrumented for in-cylinder pressure measurements. The engine was run at several steady engine states at multiple timing conditions using both federal low sulfur and natural gas derived FT fuels. The emissions and performance data for each fuel at each steady state operating conditions were compared.
Technical Paper

Development of A Microwave Assisted Regeneration System for A Ceramic Diesel Particulate System

1999-10-25
1999-01-3565
Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
X