Refine Your Search

Topic

Search Results

Technical Paper

Development of a Control-Oriented Cylinder Air-Charge Model for Gasoline Engines with Dual Independent Cam Phasing

2022-03-29
2022-01-0414
Cylinder air-charge is one of the most important parts of the torque control in a gasoline engine, due to the necessity to keep a stoichiometric air-fuel ratio, for the three-way catalyst to work efficiently. Throttle and phasing of the camshafts are actuators that have a big effect on the cylinder air-charge, this results in a cross-coupling between the actuators. One approach to handle the cross-coupling that occurs with multiple actuators is to use model predictive control (MPC), that handles the cross-coupling through the use of models and optimization. Models that support computation of gradients and hessians are desirable for use in MPC. To support the model design experimental data of cylinder pressure, from an inline four-cylinder engine with dual independent cam phasing, supported by gas exchange simulation, the effects from variable valve timing on the cylinder air-charge are investigated during the valve overlap period.
Technical Paper

System Identification, Trajectory Optimization and MPC for Time Optimal Turbocharger Testing in Gas-Stands with Unknown Maps

2019-04-02
2019-01-0321
Turbocharger testing is a time consuming process, and as rapid-prototyping technology advances, so must other areas in the development chain. As an example, in one study a compressor map took over 34 hours to measure. In this paper, an effort to combat the main bottleneck of turbocharger testing, namely the thermal inertia, is made. When changing operating point during the measurement process, several minutes can be required before the turbocharger components reach temperature steady state. In an earlier paper, a method based on non-linear trajectory optimization was developed that significantly reduced the testing time required to produce compressor performance maps. The time was reduced by a factor of over 60, compared to waiting for the system to reach steady state with constant inputs. However, the method required a model of the turbocharger. This paper extends the method with system identification and model predictive control (MPC).
Technical Paper

Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles

2019-04-02
2019-01-0989
Exhaust aftertreatment systems are essential components in modern powertrains, needed to reach the low legislated levels of NOx and soot emissions. A well designed diesel engine exhaust aftertreatment system can have NOx conversion rates above 95%. However, to achieve high conversion the aftertreatment system must be warm. Because of this, large parts of the total NOx emissions come from cold starts where the engine has been turned off long enough for the aftertreatment system to cool down and loose its capacity to reduce NOx. It is therefore important to understand how the aftertreatment cools down when the engine in turned off. Experimental data for a catalyst cool-down process is presented and analyzed. The analysis shows that it is important to capture the spatial distribution of temperatures both in axial and radial directions. The data and analysis are used to design a catalyst thermal model that can be used for model based catalyst temperature monitoring and control.
Technical Paper

Turbocharger Impact on Diesel Electric Powertrain Performance

2018-04-03
2018-01-0965
When electrifying the powertrain, there arises an opportunity to revise the traditional turbocharging trade-off between fuel-economy and transient performance. With the help of electrification, it might be possible to make the trade-off in favor of fuel economy, since transient response can be improved by the electric machine. The paper investigates this trade-off by looking at three turbocharger selections. A conventionally dimensioned turbocharger, an efficiency optimized turbocharger with maintained flow capacity, and an efficiency optimized turbocharger with increased flow capacity. The concepts are evaluated on the following cases: stationary operation, engine tip-in performance, vehicle acceleration performance, and on road fuel economy performance. The investigation is based on a validated mean value engine model of a six cylinder inline CI engine, and on a validated driveline and vehicle model of a heavy-duty truck.
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Technical Paper

Analysis and Development of Compact Models for Mass Flows through Butterfly Throttle Valves

2018-04-03
2018-01-0876
Throttles and wastegates are devices used in modern engines for accurate control of the gas flows. It is beneficial, for the control implementation, to have compact and accurate models that describe the flow behavior. The compressible isentropic restriction is a frequently used model, it is simple and reasonable accurate but it has some issues. One special issue is that it predicts that the choking occurs at too high pressure ratios, for example the isentropic model predicts choking at a pressure ratio of 0.52, while experimental data can have choking at 0.4 or even lower. In this work, experimental data is acquired from throttles tested both in a flow bench and mounted as main throttle on a turbocharged gasoline engine. To analyze the flow behavior several flow characterizations are performed at different throttle openings.
Technical Paper

The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications

2017-03-28
2017-01-0189
This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design.
Technical Paper

A Comparison of Four Modelling Techniques for Thermoelectric Generator

2017-03-28
2017-01-0144
The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Technical Paper

Development and Usage of a Continuously Differentiable Heavy Duty Diesel Engine Model Equipped with VGT and EGR

2017-03-28
2017-01-0611
Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented.
Technical Paper

Turbo Speed Estimation Using Fixed-Point Iteration

2017-03-28
2017-01-0591
1 In modern turbocharged engines the power output is strongly connected to the turbocharger speed, through the flow characteristics of the turbocharger. Turbo speed is therefore an important state for the engine operation, but it is usually not measured or controlled directly. Still the control system must ensure that the turbo speed does not exceed its maximum allowed value to prevent damaging the turbocharger. Having access to a turbo speed signal, preferably by a cheap and reliable estimation instead of a sensor, could be beneficial for over speed protection and supervision of the turbocharger. This paper proposes a turbo speed observer that only utilizes the conditions around the compressor and a model for the compressor map. These conditions are either measured or can be more easily estimated from available sensors compared the conditions on the turbine side.
Technical Paper

The Position Control of a Gasoline Engine during Shutdown

2017-03-28
2017-01-1630
Since the first stop-start system introduced in 1983, more and more vehicles have been equipped with this kind of automatic engine control system. Recently, it was found that there is strong correlation between engine resting position and the subsequent engine start time. The utilization of the synchronization time working from a required engine stop position prior the engine start request was shown to reduce start times. Hence the position control of an engine during shutdown becomes more significant. A naturally aspirated engine was modelled using the GT-Suite modelling environment to facilitate the development of position controllers using Simulink ®. The use of respectively the throttle and a belt mounted motor generator to provide a control input was considered. Proportional-Integral-Differential (PID), sliding mode and deadbeat control strategies were each used in this study.
Journal Article

Calculation of Optimal Heat Release Rates under Constrained Conditions

2016-04-05
2016-01-0812
The work extends a methodology, for searching for optimal heat release profiles, by adding complex constraints on states. To find the optimum heat release profile a methodology, that uses available theory and methods, was developed that enables the use of state of the art optimal control software to find the optimum combustion trace for a model. The methodology is here extended to include constraints and the method is then applied to study how sensitive the solution is to different effects such as heat transfer, crevice flow, maximum rate of pressure rise, maximum pressure, knock and NO generation. The Gatowski single zone model is extended to a pseudo two zone model, to get an unburned zone that is used to describe the knocking and a burned zone for NO generation. A modification of the extended Zeldovich mechanism that makes it continuously differentiable, is used for NO generation.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Technical Paper

Optimal Control of a Diesel-Electric Powertrain During an Up-Shift

2016-04-05
2016-01-1237
To investigate the optimal controls of a diesel-electric powertrain during a torque controlled gearshift, a powertrain model is developed. A validated diesel-electric model is used as the power source and the transmission dynamics are described by different sets of differential equations during torque phase, synchronization phase and inertia phase of the gearshift. Using the developed model, multi-phase optimal control problems are formulated and solved. The trade-off between gearshift duration and driveline oscillations are calculated and efficient gearshift transients for a diesel-electric and pure diesel powertrain are then compared and analyzed.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Journal Article

Computing Optimal Heat Release Rates in Combustion Engines

2015-04-14
2015-01-0882
The combustion process has a high impact on the engine efficiency, and in the search for efficient engines it is of interest to study the combustion. Optimization and optimal control theory is used to compute the most efficient combustion profiles for single zone model with heat transfer and crevice effects. A model is first developed and tuned to experimental data, the model is a modification of the well known Gatowski et al.-model [1]. This model is selected since it gives a very good description of the in-cylinder pressure, and thus the produced work, and achieves this with a low computational complexity. This enables an efficient search method that can maximize the work to be developed. First, smooth combustion profiles are studied where the combustion is modeled using the Vibe function, and parametric optimization is used to search for the optimal profile.
Technical Paper

Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag

2015-04-14
2015-01-1159
The objective of the work reported in this paper was to identify how turbocharger response time (“turbo-lag”) is best managed using pneumatic hybrid technology. Initially methods to improve response time have been analysed and compared. Then the evaluation of the performance improvement is conducted using two techniques: engine brake torque response and vehicle acceleration, using the engine simulation code, GT-SUITE [1]. Three pneumatic hybrid boost systems have been considered: Intake Boost System (I), Intake Port Boost System (IP) and Exhaust Boost System (E). The three systems respectively integrated in a six-cylinder 7.25 l heavy-duty diesel engine for a city bus application have been modelled. When the engine load is increased from no load to full load at 1600 rpm, the development of brake torque has been compared and analysed. The findings show that all three systems significantly reduce the engine response time, with System I giving the fastest engine response.
Technical Paper

Benefiting from Sobol Sequences Experiment Design Type for Model-based Calibration

2015-04-14
2015-01-1640
Design of Experiments (DOE) introduces a number of design types such as space filling design and optimal design. However, optimal design type is best for a system with high prior knowledge. Meanwhile, space-filling design is good for unknown systems, which is normal for engine calibration. It would be best to have a design that can support constructive model building, where a block of engine test is run for most of the day and followed by engine modeling at the end of the day. However, this needs separate space filling design for each day and separate design is susceptible to redundant test points. Among of the five space-filling design type, Sobol sequences and Halton sequences can support constructive model building due to the deterministic random sequence characteristic. When the model is good enough for system prediction, the remaining engine test can stop and proceed to model optimization.
Journal Article

Turbocharger Dynamics Influence on Optimal Control of Diesel Engine Powered Systems

2014-04-01
2014-01-0290
The importance of including turbocharger dynamics in diesel engine models are studied, especially when optimization techniques are to be used to derive the optimal controls. This is done for two applications of diesel engines where in the first application, a diesel engine in wheel loader powertrain interacts with other subsystems to perform a loading operation and engine speed is dictated by the wheel speed, while in the second application, the engine operates in a diesel-electric powertrain as a separate system and the engine speed remains a free variable. In both applications, mean value engine models of different complexities are used while the rest of system components are modeled with the aim of control study. Optimal control problems are formulated, solved, and results are analyzed for various engine loading scenarios in the two applications with and without turbocharger dynamics.
X