Refine Your Search

Topic

Search Results

Standard

Overlap Shear Test for Sealant Adhesive Bonding of Automotive Glass Encapsulating Material to Body Opening

2021-01-07
CURRENT
J1836_202101
This recommended practice defines a procedure for the construction of a lap shear specimen for the purpose of testing the bondability of an automotive sealant adhesive to the elastomeric material used in automotive encapsulating. The present practice of encapsulating automotive glass is described as molding elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with cured elastomeric material bonded to the perimeter of thee glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

Abrasion Resistance Testing - Vehicle Exterior Graphics and Pin Striping

2021-01-07
CURRENT
J1847_202101
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Induction Cure Test for Metal Bonding Adhesives

2021-01-07
CURRENT
J1851_202101
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

Softening Point of Interior Trim Adhesives

2021-01-07
CURRENT
J1700_202101
This SAE Recommended Practice shall be used to determine the temperature at which an adhesive softens to the point at which it no longer can support a given load.
Standard

Coach Joint Fracture Test

2021-01-07
CURRENT
J1863_202101
This SAE Recommended Practice defines a procedure for determining the cleavage strength of an adhesive used for bonding automotive oily metal substrates.
Standard

Methods of Tests for Automotive-Type Sealers, Adhesives, and Deadeners

2021-01-07
CURRENT
J243_202101
This SAE Recommended Practice contains a series of test methods for use in measuring characteristics of automotive-type sealers, adhesives, and deadeners. The test methods which are contained in this document are as follows: ADS-1—Methods of Determining Viscosity ADS-2—Low Temperature Tests ADS-3—Weld-Through Tests ADS-4—Enamel, Lacquer, and Fabric Staining Test ADS-5—Wash-Off Resistance Test ADS-7—Solids Test ADS-8—Flash Point Test ADS-9—Sag and Bridging Tests ADS-10—Flow Test The intent of this document is to provide a series of test methods which can be used in testing the various qualities of sealers, adhesives, and deadener material. In later revisions of this document, attempts will be made to reduce the number of tests now presented. The specific temperatures and times at which some of these tests are to be conducted are not dictated in these test procedures, but they will be found in the material standards which govern each type of material to be tested.
Standard

Overlap Shear Test for Automotive Type Sealant for Stationary Glass Bonding

2021-01-07
CURRENT
J1529_202101
This SAE Recommended Practice defines a procedure for the construction and testing of glass to metal lap shears for determining shear strength of sealant adhesives for automotive stationary glass bonding. This procedure can also be used for fiber reinforced plastic (FRP) when used in place of metal.
Standard

Technical Report on Low Cycle Fatigue Properties Ferrous and Non-Ferrous Materials

2018-08-24
CURRENT
J1099_201808
Information that provides design guidance in avoiding fatigue failures is outlined in this SAE Information Report. Of necessity, this report is brief, but it does provide a basis for approaching complex fatigue problems. Information presented here can be used in preliminary design estimates of fatigue life, the selection of materials and the analysis of service load and/or strain data. The data presented are for the “low cycle” or strain-controlled methods for predicting fatigue behavior. Note that these methods may not be appropriate for materials with internal defects, such as cast irons, which exhibit different tension and compression stress-strain behavior.
Standard

Recommended Guidelines for Fatigue Testing of Elastomeric Materials and Components

2017-02-13
CURRENT
J1183_201702
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
X