Refine Your Search

Topic

Search Results

Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Heat Sinks for Airborne Vehicles

2021-12-15
CURRENT
AIR1957A
This document summarizes types of heat sinks and considerations in relation to the general requirements of aircraft heat sources, and it provides information to achieve efficient utilization and management of these heat sinks. In this document, a heat sink is defined as a body or substance used for removal of the heat generated by thermodynamic processes. This document provides general data about airborne heat sources, heat sinks, and modes of heat transfer. The document also discusses approaches to control the use of heat sinks and techniques for analysis and verification of heat sink management. The heat sinks are for aircraft operating at subsonic and supersonic speeds.
Standard

Electrical and Electronic Equipment Cooling in Commercial Transports

2021-08-10
CURRENT
AIR64C
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment.
Standard

Airborne Chemicals in Aircraft Cabins

2021-06-22
CURRENT
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Origins of chemical airborne contaminants during routine operating and failure conditions. Exposure control measures, including design, maintenance, and worker training/education. This AIR does not deal with airflow requirements.
Standard

Heater and Accessories, Aircraft Internal Combustion Heat Exchanger Type

2019-10-01
CURRENT
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2019-04-11
CURRENT
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Environmental Control System Contamination

2017-06-19
HISTORICAL
AIR1539B
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsibility of the ECS designer.
Standard

Acoustical Considerations for Aircraft Environmental Control System Design

2016-08-11
CURRENT
AIR1826A
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2015-11-09
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Environmental Control Systems for Helicopters

2014-12-05
HISTORICAL
ARP292C
This ARP discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for helicopter environmental control systems (ECS). The helicopter ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military helicopters where an ECS is specified; however, certain requirements peculiar to military applications, such as nuclear, biological and chemical (NBC) protection, are not covered.
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2013-02-14
HISTORICAL
AS8040B
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Environmental Control for Civil Supersonic Transport

2011-08-10
CURRENT
AIR746C
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2011-07-25
CURRENT
AIR1168/6A
This section relates the engineering fundamentals and thermophysical property material of the previous sections to the airborne equipment for which thermodynamic considerations apply. For each generic classification of equipment, information is presented for the types of equipment included in these categories, and the thermodynamic design considerations with respect to performance, sizing, and selection of this equipment.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2011-07-25
CURRENT
AIR1168/8A
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission. The curves are for a range of specific fuel consumption (SFC) and lift/drag ratio (L/D) compatible with the jet engines and supersonic aircraft currently being developed. A typical example showing use of the charts for an air conditioning system is given. Evaluation of the penalty imposed on aircraft performance characteristics by the installation of an air conditioning system is important for two reasons: 1 It provides a common denominator for comparing systems in the preliminary design stage, thus aiding in the choice of system to be used. 2 It aids in pinpointing portions of existing systems where design improvements can be most readily achieved.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2011-06-20
HISTORICAL
AIR1168/1
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Acoustical Considerations for Aircraft Environmental Control System Design

2011-01-14
HISTORICAL
AIR1826
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in the bibliography and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2008-11-06
HISTORICAL
AS8040A
This SAE Aerospace Standard (AS) covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Environmental Control for Civil Supersonic Transport

2006-06-28
HISTORICAL
AIR746B
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
X