Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

2024-04-09
2024-01-2688
A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Journal Article

Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models

2023-04-11
2023-01-0112
Fatigue analysis of pistons is reliant on an accurate representation of the high temperatures to which they are exposed. It can be difficult to represent this accurately, because instrumented tests to validate piston thermal models typically include only measurements near the piston crown and there are many unknown backside heat transfer coefficients (HTCs). Previously, a methodology was proposed to aid in the estimation of HTCs for backside convection boundary conditions of a stratified charge compression ignition (SCCI) piston. This methodology relies on Bayesian inference of backside HTC using a co-simulation between computational fluid dynamics (CFD) and finite element analysis (FEA) solvers. Although this methodology primarily utilizes the more computationally efficient FEA model for the iterations in the calibration, this can still be a computationally expensive process.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Delamination Failure on High-Output Diesel Engine Thermal Barrier Coatings

2022-03-29
2022-01-0440
An analytical mechanics model was employed to predict the delamination of several thermal-barrier-coated pistons that had been previously tested in a high-output, single-cylinder diesel engine. Some of the coatings delaminated during engine operation. Results are presented for two thicknesses of the same coating material, and for two similar coatings with different levels of stiffness. All the coating thermomechanical properties such as thermal conductivity, density, volumetric heat capacity, thickness, elastic modulus, coefficient of thermal expansion, Poisson ratio and toughness, were measured prior to engine testing. Previous measurements of the piston transient heat flux, based on fast-response surface temperature data, in the same engine were used as an input to calculate the multilayer wall temperature distribution. A theoretical methodology was employed to evaluate and predict the coating durability.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Journal Article

Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications

2022-03-29
2022-01-0599
Five different commercially available high-temperature martensitic steels were evaluated for use in a heavy-duty diesel engine piston application and compared to existing piston alloys 4140 and microalloyed steel 38MnSiVS5 (MAS). Finite element analyses (FEA) were performed to predict the temperature and stress distributions for severe engine operating conditions of interest, and thus aid in the selection of the candidate steels. Complementary material testing was conducted to evaluate the properties relevant to the material performance in a piston. The elevated temperature strength, strength evolution during thermal aging, and thermal property data were used as inputs into the FEA piston models. Additionally, the long-term oxidation performance was assessed relative to the predicted maximum operating temperature for each material using coupon samples in a controlled-atmosphere cyclic-oxidation test rig.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Journal Article

Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications

2017-03-28
2017-01-0133
This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
Technical Paper

Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits

2015-09-06
2015-24-2449
The limited operational range of low temperature combustion engines is influenced by near-wall conditions. A major factor is the accumulation and burn-off of combustion chamber deposits. Previous studies have begun to characterize in-situ combustion chamber deposit thermal properties with the end goal of understanding, and subsequently replicating the beneficial effects of CCD on HCCI combustion. Combustion chamber deposit thermal diffusivity was found to differ depending on location within the chamber, with significant initial spatial variations, but a certain level of convergence as equilibrium CCD thickness is reached. A previous study speculatively attributed these spatially dependent CCD diffusivity differences to either local differences in morphology, or interactions with the fuel-air charge in the DI engine. In this work, the influence of directly injected gasoline on CCD thermal diffusivity is measured using the in-situ technique based on fast thermocouple signals.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Technical Paper

Effects of Turbulence on Mixture Stratification in a Small-Bore Utility Engine

2012-10-23
2012-32-0005
The current work investigates the in-cylinder mixing of a fluorescent tracer species inducted into the engine through a small-diameter tube mounted along the inner port wall and the remaining inlet stream in a small-bore utility engine. Planar laser-induced fluorescence (PLIF) measurements were acquired on a single plane, parallel to and approximately 4 mm below the cylinder head deck, throughout the intake and compression strokes. The data were analyzed to qualitatively and quantitatively describe the evolution of the mixture stratification. The highest degree of stratification in the mean field was observed at a timing of 90 crank angle (CA) degrees after top dead center (aTDC) of the intake stroke, which corresponds closely to the point of maximum intake valve lift (105 CA degrees aTDC).
Technical Paper

Deaeration Device Study for a Hydraulic Hybrid Vehicle

2012-09-24
2012-01-2038
This paper investigates the development of a deaeration device to remove nitrogen from the hydraulic fluid in hydraulic hybrid vehicles (HHVs). HHVs, which use accumulators to store and recycle energy, can significantly reduce vehicle emissions in urban delivery vehicles. In accumulators, nitrogen behind a piston cylinder or inside a bladder pressurizes an incompressible fluid. The permeation of the nitrogen through the rubber bladder into the hydraulic fluid limits the efficiency and reliability of the HHV system, since the pressure drop in the hydraulic fluid can in turn cause cavitation on pump components and excessive noise in the system. The nitrogen bubbles within the hydraulic fluid may be removed through the employment of commercial bubble eliminators if the bubbles are larger than a certain threshold. However, gas is also dissolved within the hydraulic fluid; therefore, novel design is necessary for effective deaeration in the fluid HHV circuit.
Technical Paper

Ignition and Combustion Simulations of Spray-Guided SIDI Engine using Arrhenius Combustion with Spark-Energy Deposition Model

2012-04-16
2012-01-0147
An Arrhenius combustion model (chemically controlled model) with a spark-energy deposition model having a moving spherical ignition source in the Converge CFD code is validated with a single-cylinder spray-guided SIDI engine at idle-like lean-burn operating conditions with both single- and double-pulse fuel injection. It was found that a fine mesh is required for accurate solving of "laminar-flame" like reaction front propagation. A reduced chemistry mechanism for iso-octane is used as gasoline surrogate. The effects of spark advance were studied by the simulation and experiment. The results show that this modeling approach can provide reasonable predictions for the spray-guided SIDI engine with single- and double-pulse injections.
Technical Paper

Hydraulic Hybrid Powertrain-In-the-Loop Integration for Analyzing Real-World Fuel Economy and Emissions Improvements

2011-09-13
2011-01-2275
The paper describes the approach, addresses integration challenges and discusses capabilities of the Hybrid Powertrain-in-the-Loop (H-PIL) facility for the series/hydrostatic hydraulic hybrid system. We describe the simulation of the open-loop and closed-loop hydraulic hybrid systems in H-PIL and its use for concurrent engineering and development of advanced supervisory strategies. The configuration of the hydraulic-hybrid system and details of the hydraulic circuit developed for the H-PIL integration are presented. Next, software and hardware interfaces between the real components and virtual systems are developed, and special attention is given to linking component-level controllers and system-level supervisory control. The H-PIL setup allows imposing realistic dynamic loads on hydraulic pump/motors and accumulator based on vehicle driving schedule.
Technical Paper

Sufficient Condition on Valve Timing for Robust Load Transients in HCCI Engines

2010-04-12
2010-01-1243
Homogeneous Charge Compression Ignition (HCCI) combustion is known for its significant fuel economy benefit with near-zero NOx and particulate emissions. Stable HCCI combustion relies on a well-controlled temperature and composition of the cylinder charge at the intake valve closing that in turn requires a precise coordination of all engine inputs. In this paper, the HCCI combustion is realized by retaining hot residual from the previous combustion event using the recompression valve strategy. The recompression valve strategy closes the exhaust valves before the top dead center and opens the intake valves at an angle symmetric to the exhaust valve closing. Depending on the engine load, different valve open/close timings with respect to the crank position are used to trap different amounts of residual gases. It is critical to coordinate the change in the valve open/close timings with the change in the injected fuel quantity during load transients in order to maintain stable combustion.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
X