Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Novel Supervisory Control and Analysis Approach for Hybrid Electric Vehicles

2020-04-14
2020-01-1192
There are many methods developed over the past decade to solve the problem of energy management control for hybrid electric vehicles. A novel method is introduced in this paper to address the same problem which reduces the problem to a set of physical equations and maps. In simple terms, this method directly calculates the actual cost or savings in fuel energy from the generation or usage of electric energy. It also calculates the local optimum electric power that yields higher electric fuel savings (EFS) or lower electric fuel cost (EFC) in the fuel energy that is spent for driving the vehicle (which in general does not take the system to the lowest engine Brake Specific Fuel Consumption (BSFC)). Based on this approach, a control algorithm is developed which attempts to approach the global optimum over a drive cycle.
Journal Article

Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications

2017-03-28
2017-01-0133
This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
Technical Paper

Extended Range Cam Phasing Effects on Engine Stop/Start Quality

2014-04-01
2014-01-1700
Engine stop/start systems are one technology being developed to meet ever tightening fuel economy regulations. Several production vehicles in the market have adopted stop/start systems with 12 volt batteries and enhanced starters. During engine autostart events (restart after autostop), the engine/vehicle vibration may be objectionable to customers. In this paper, the impact of extended range retarded intake cam phasing on first cycle combustion and vehicle vibration during engine autostart is provided. The engine intake cam phasers of a production vehicle were modified so the effective compression during autostart could be set as low as 3.5. Achieving these autostart conditions while maintaining typical cam timing positions under cold start conditions is achievable with an innovative dual park phaser. NVH measurements and engine speed traces indicate that this approach reduced vibration during engine autostart by a measurable amount. Subjective driver feedback was also positive.
X