Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

A Novel Supervisory Control and Analysis Approach for Hybrid Electric Vehicles

2020-04-14
2020-01-1192
There are many methods developed over the past decade to solve the problem of energy management control for hybrid electric vehicles. A novel method is introduced in this paper to address the same problem which reduces the problem to a set of physical equations and maps. In simple terms, this method directly calculates the actual cost or savings in fuel energy from the generation or usage of electric energy. It also calculates the local optimum electric power that yields higher electric fuel savings (EFS) or lower electric fuel cost (EFC) in the fuel energy that is spent for driving the vehicle (which in general does not take the system to the lowest engine Brake Specific Fuel Consumption (BSFC)). Based on this approach, a control algorithm is developed which attempts to approach the global optimum over a drive cycle.
Journal Article

Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications

2017-03-28
2017-01-0133
This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
Technical Paper

Characterization of Aging Effect on Three-Way Catalyst Oxygen Storage Dynamics

2016-04-05
2016-01-0971
The Three Way Catalyst (TWC) is an effective pollutant conversion system widely used in current production vehicles to satisfy emissions regulations. A TWC’s conversion efficiency degrades over time due to chemical and/or thermal mechanisms causing the catalyst to age. This reduction in conversion efficiency must be accounted for to ensure full useful life emissions compliance. This paper presents an experimental study of the aging impact on TWC performance. Four TWCs differentiated by their age, given in terms of miles driven, were tested. It is shown that the dynamics of oxygen storage are substantially affected by aging of the TWC. A previously developed physics-based oxygen storage model [1] is subsequently used to incorporate the effect of aging on the total Oxygen Storage Capacity (OSC). Parameter identification results for the different age catalysts show that total oxygen storage capacity decreases substantially with aging and is insensitive to operating conditions.
Technical Paper

Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits

2015-09-06
2015-24-2449
The limited operational range of low temperature combustion engines is influenced by near-wall conditions. A major factor is the accumulation and burn-off of combustion chamber deposits. Previous studies have begun to characterize in-situ combustion chamber deposit thermal properties with the end goal of understanding, and subsequently replicating the beneficial effects of CCD on HCCI combustion. Combustion chamber deposit thermal diffusivity was found to differ depending on location within the chamber, with significant initial spatial variations, but a certain level of convergence as equilibrium CCD thickness is reached. A previous study speculatively attributed these spatially dependent CCD diffusivity differences to either local differences in morphology, or interactions with the fuel-air charge in the DI engine. In this work, the influence of directly injected gasoline on CCD thermal diffusivity is measured using the in-situ technique based on fast thermocouple signals.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Technical Paper

Vehicle Modeling and Evaluation of the Engine Options in Conventional and Mild-Hybrid Powertrain

2013-04-08
2013-01-1449
The focus of this paper is on developing, modeling and simulation framework for a bias free comparison of different engine concepts in a conventional and hybrid configuration. The first unique contribution of this paper is in the development of a shift logic algorithm that allows tailoring the shift schedule to unique engine characteristics in a consistent manner. The shift schedule is intentionally generated in a generic manner by using identical set of rules for all engines. Therefore, the methodology allows a fair comparison of different engine concepts, while taking into account the individual features of the engine i.e. speed range, efficiency and maximum performance. The latter establishes a baseline for the subsequent study of hybrid configurations. The second unique contribution is the hybrid strategy optimization algorithm, also tailored to a particular engine configuration.
Technical Paper

Deaeration Device Study for a Hydraulic Hybrid Vehicle

2012-09-24
2012-01-2038
This paper investigates the development of a deaeration device to remove nitrogen from the hydraulic fluid in hydraulic hybrid vehicles (HHVs). HHVs, which use accumulators to store and recycle energy, can significantly reduce vehicle emissions in urban delivery vehicles. In accumulators, nitrogen behind a piston cylinder or inside a bladder pressurizes an incompressible fluid. The permeation of the nitrogen through the rubber bladder into the hydraulic fluid limits the efficiency and reliability of the HHV system, since the pressure drop in the hydraulic fluid can in turn cause cavitation on pump components and excessive noise in the system. The nitrogen bubbles within the hydraulic fluid may be removed through the employment of commercial bubble eliminators if the bubbles are larger than a certain threshold. However, gas is also dissolved within the hydraulic fluid; therefore, novel design is necessary for effective deaeration in the fluid HHV circuit.
Journal Article

Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming

2012-04-16
2012-01-1015
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency.
Journal Article

Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in Heavy-Duty HEVs

2011-09-13
2011-01-2253
Electrification and hybridization show great potential for improving fuel economy and reducing emission in heavy-duty vehicles. However, high battery cost is unavoidable due to the requirement for large batteries capable of providing high electric power for propulsion. The battery size and cost can be reduced with advanced battery control strategies ensuring safe and robust operation covering infrequent extreme conditions. In this paper, the impact of such a battery control strategy on battery sizing and fuel economy is investigated under various military and heavy-duty driving cycles. The control strategy uses estimated Li-ion concentration information in the electrodes to prevent battery over-charging and over-discharging under aggressive driving conditions. Excessive battery operation is moderated by adjusting allowable battery power limits through the feedback of electrode-averaged Li-ion concentration estimated by an extended Kalman filter (EKF).
Technical Paper

Hydraulic Hybrid Powertrain-In-the-Loop Integration for Analyzing Real-World Fuel Economy and Emissions Improvements

2011-09-13
2011-01-2275
The paper describes the approach, addresses integration challenges and discusses capabilities of the Hybrid Powertrain-in-the-Loop (H-PIL) facility for the series/hydrostatic hydraulic hybrid system. We describe the simulation of the open-loop and closed-loop hydraulic hybrid systems in H-PIL and its use for concurrent engineering and development of advanced supervisory strategies. The configuration of the hydraulic-hybrid system and details of the hydraulic circuit developed for the H-PIL integration are presented. Next, software and hardware interfaces between the real components and virtual systems are developed, and special attention is given to linking component-level controllers and system-level supervisory control. The H-PIL setup allows imposing realistic dynamic loads on hydraulic pump/motors and accumulator based on vehicle driving schedule.
Technical Paper

Air System Management to Improve a Diesel Engine

2011-08-30
2011-01-1829
The paper presents the structure of an air system controller and its application to a modern boosted dual loop EGR Diesel engine. Results over a U.S. FTP cycle which show improvements in emissions and fuel consumption with future opportunities for increased performance are discussed. A recent application of the controller is also shown where standard engine sensors are eliminated to reduce cost and their function is replaced with in-cylinder pressure measurement combined with signal processing techniques.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Technical Paper

Control Strategy Optimization for Hybrid EGR Engines

2009-04-20
2009-01-1451
Control strategies for engines with multiple sources of EGR (Hybrid EGR), such as high and low pressure, have been developed and are in or near production. Next generation engines require these basic approaches be extended to take advantage of the capabilities these advanced air systems offer. This paper presents a number of the practical challenges encountered when attempting to do this control system optimization as well as proposed solutions. Engine test results showing the net improvements to emissions and transient response when using these techniques are discussed.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
X