Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a CAE Method for Predicting Vehicle Launch Performance with Various VCT Strategies

2018-04-03
2018-01-0487
Powertrain and vehicle technology is rapidly changing to meet the ever increasing demands of customers and government regulations. In some cases technologies that are designed to improve one attribute may impact others or interact with other design decisions in unexpected ways. Understanding the interactions and optimizing the transient performance at the vehicle level may require controls and calibration that is not available until late in the vehicle development process, after hardware changes are no longer possible. As a result, an efficient, up front, CAE process for assessing the interaction of various design choices on transient vehicle behavior is desirable. Building, calibrating and validating a vehicle system model with full controls and a mature calibration is very time consuming and often requires significant experimental data that is not available until it is too late to make hardware changes.
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

2013-04-08
2013-01-0920
For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Technical Paper

Comparison of an On-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle

2011-04-12
2011-01-0627
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

2009-06-15
2009-01-1936
This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Technical Paper

Modeling the Evaporative Emissions of Oil-Fuel Mixtures

2006-10-16
2006-01-3402
Motor vehicle hydrocarbon evaporative emissions are a crucial part of emissions regulations, and increasingly-stringent regulations stipulate essentially zero fuel-based hydrocarbon evaporative emissions. In port fuel injected engines, there is the potential for accumulation of PCV effluent in the intake system under certain vehicle operating conditions. The majority of this effluent is oil, but a percentage has been shown to be fuel. The percentage of fuel in this oil-fuel mixture in the intake is at a minimum equivalent to the fuel dilution level of the crankcase oil, and at times can be higher due to other sources of fuel, and fuel vapor, in the intake. This accumulation of liquid oil-fuel mixture can be a contributor of hydrocarbon evaporative emissions migrating out of the air induction system when subjected to transient temperatures while the engine is off.
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

2006-04-03
2006-01-1049
Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Technical Paper

Analytical Assessment of Simplified Transient Fuel Tests for Vehicle Transient Fuel Compensation

2005-10-24
2005-01-3894
Good air/fuel ratio (A/F) control is essential to high quality combustion performance, drivability and emissions in internal combustion engine powered vehicles. Cold start and transient fuel wall wetting effects cause significant A/F control challenges in port fuel injected (PFI) engines. Transient fuel compensation (TFC) strategies are used to help control the A/F during cold starts and transient load and RPM conditions for good vehicle performance, but developing optimum TFC strategies and calibrations in a vehicle with many competing effects is very difficult. Thus, simplified transient tests such as fuel or throttle perturbation tests are often used to develop and validate new strategies or calibrations for use in vehicle. This paper will illustrate the use of a validated physical model to analytically assess the value of fuel and throttle perturbation tests for developing a TFC calibration for vehicle use.
Technical Paper

Modeling Transient Fuel Effects with Alternative Fuels

2005-04-11
2005-01-1127
As regulations become more stringent, transient fuel control becomes extremely important for meeting emissions requirements in a cost-effective manner. Significant modeling work has been performed for a variety of conventional gasolines in port fuel injected (PFI) engines. This paper describes an extension of previous modeling work for alternative fuels. The paper first details the application of a distillation model to create the multi-component fuel models used in the simulations. The fuel models are then used in the transient Four Puddle Model to simulate the coupled liquid fuel and thermal/thermodynamic processes in the engine. Simulation results from the model are compared with dynamometer data over a transient, warm-up test.
Technical Paper

Improving Heavy-Duty Engine Efficiency and Durability: The Rotating Liner Engine

2005-04-11
2005-01-1653
The Rotating Linear Engine (RLE) derives improved fuel efficiency and decreased maintenance costs via a unique lubrication design, which decreases piston assembly friction and the associated wear for heavy-duty natural gas and diesel engines. The piston ring friction exhibited on current engines accounts for 1% of total US energy consumption. The RLE is expected to reduce this friction by 50-70%, an expectation supported by hot motoring and tear-down tests on the UT single cylinder RLE prototype. Current engines have stationary liners where the oil film thins near the ends of the stroke, resulting in metal-to-metal contact. This metal-to-metal contact is the major source of both engine friction and wear, especially at high load. The RLE maintains an oil film between the piston rings and liner throughout the piston stroke due to liner rotation. This assumption has also been confirmed by recent testing of the single cylinder RLE prototype.
Technical Paper

Engine Friction Reduction Through Liner Rotation

2005-04-11
2005-01-1652
Cylinder liner rotation (Rotating Liner Engine, RLE) is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of the RLE is to reduce or eliminate the occurrence of boundary and mixed lubrication friction in the piston assembly (specifically, the rings and skirt). This paper reports the results of experiments to quantify the potential of the RLE. A 2.3 L GM Quad 4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. To allow examination of the effects of liner rotational speed, the rotating liner is driven by an electric motor. A torque cell in the motor output shaft is used to measure the torque required to rotate the liner. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, hot motoring tear-down tests were used to measure the contribution of each engine component to the total friction torque.
Technical Paper

Further Development of an On-Board Distillation System for Generating a Highly Volatile Cold-Start Fuel

2005-04-11
2005-01-0233
The On-Board Distillation System (OBDS) extracts, from gasoline, a highly volatile crank fuel that enables simultaneous reduction of start-up fuel enrichment and significant ignition timing retard during cold-starting. In a previous paper we reported reductions in catalyst light-off time of >50% and THC emissions reductions >50% over Phase I of the FTP drive cycle. The research presented herein is a further development of the OBDS concept. For this work, OBDS was improved to yield higher-quality start-up fuel. The PCM calibration was changed as well, in order to improve the response to intake manifold pressure transients. The test vehicle was tested over the 3-phase FTP, with exhaust gases speciated to determine NMOG and exhaust toxics emissions. Also, the effectiveness of OBDS at generating a suitable starting fuel from a high driveability index test gasoline was evaluated.
Technical Paper

Modeling Transient Fuel Effects with Variable Cam Timing

2003-10-27
2003-01-3126
The physics of the mixture preparation process plays a critical role in transient engine control, a key enabler for satisfying increasingly stringent emissions requirements. This paper presents a fully transient, coupled model in Modelica for the liquid fuel behavior and thermodynamic engine cycle including thermal effects for a port fuel injection engine. Details of both the liquid fuel transport and cycle simulation models are provided. The integrated model is used to examine the effects of variable cam timing on the transient fuel behavior including comparisons between simulation results and experimental data under a variety of engine operating conditions.
X