Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Investigation and Improvement of a Bouncing Torsional Vibration in Automotive Dual Mass Flywheel by Combining Testing and 1D CAE Modeling Approach

2019-06-05
2019-01-1556
Dual mass flywheel (DMF) is a well-known isolation system for vehicle drivetrain. DMF has two typical elastic energy storage systems: long travel arc springs and in-series spring units (including two or more springs) and sliding shoes connected in series. DMF has such complex nonlinear characteristics as torque-dependent torsional stiffness and rotational speed-dependent hysteresis friction due to its dependency of centrifugal force that is applied to components and radial force of springs. Because of this complexity, sub-harmonic vibration (SHV) may occur under certain circumstances, such as under light-load and high-rotational conditions. In general, since SHV’s frequency is 1/2 or 1/3 of the engine’s combustion frequency and may cause human discomfort, DMF must be designed robust against such nonlinear vibration. In this paper to reduce the SHV occurrence and to show a more robust design indicator, the SHV causing the mechanism is researched by testing and 1D CAE modeling.
Technical Paper

Placement Technique of Measurement Points for Inverse Acoustic Analysis

2015-11-17
2015-32-0747
This paper describes a measurement points' placement technique for the sound source identification using inverse acoustic analysis. In order to reduce noise in NVH problem for various kinds of machines including small size engine, it is necessary to identify the sound source. The inverse acoustic analysis is a technique that is effective for the sound source identification.[1,2] The inverse acoustic analysis identifies a surface vibration of an object by measuring the radiated sound and solving the inverse problem. Nakano et al. researched about the location of sound pressure measurement points for accurate improvement.[3] They clarified that the sound pressure measurement points on the concentric circle gave more accurate surface vibration than the measurement points on the square lattice.
Journal Article

Dynamic Analysis of an Excavator During Digging Operation

2013-09-24
2013-01-2410
Researches for automation of hydraulic excavators have been conducted for laborsaving, improved efficiency of operations and increased worker's safety improvement. Authors' final goal is to develop automatic digging system which can realize the high efficiency. Therefore, it is thought that appropriate digging control algorithm is important for the automation. For this goal, this paper shows a dynamics model of the backhoe excavator and simulations using such models. Detailed dynamic models are needed from the point of view of the control engineering. Authors evaluate effectiveness of automatic digging algorithm by simulation models. In this research, the linkage mechanism which contains the closed loops is modeled based on the Newton-Euler formulation, where motion equation is derived. Moreover, we apply a soil model for simulation, based on the two dimensional distinct element method (DEM), in order to reproduce reaction force from grounds.
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Journal Article

Vibration Transmission Analysis of Automotive Body for Reduction of Booming Noise

2011-05-17
2011-01-1691
This paper presents progressive techniques based on the previous SAE papers [1], [2] for vibration transmission analysis (VTA) on finite element (FE) model using Transfer Path Analysis (TPA). The techniques are: 1) a contribution calculation technique for structure with manifold and continuous transfer paths: 2) a visualization technique of the influence degree for efficient derivation of measures for response reduction. In VTA, influence degree of each DOF is calculated based on TPA. In order to understand characteristics of vibration transmission (VT) easily and visually by engineers, magnitude of influence degree is expressed by replacement to magnitude of displacement in the diagram of FE vibration shape. This visualization technique is applied to an automotive body structure. The proposed techniques are applied to automotive body structure consisting of members and panels. The members are such as pillars, cross members and side members, which are the main VT paths.
Technical Paper

Application of Multi-objective Optimization to Exhaust Silencer Design

2007-05-15
2007-01-2210
This paper describes how use of multi-objective optimization of pulsating noise and backpressure improved an exhaust silencer for diesel drive equipment. Low frequency pulsating noise and backpressure were simultaneously predicted using one-dimensional fluid dynamics and acoustic analysis by BEM. In addition, an experiment was done to investigate the relation between high frequency noise including flow-induced noise and the dimensions of perforations in silencer pipes. Finally, a prototype of the exhaust silencer was built and examined in order to confirm the effects of these design methods mentioned. As predicted, exhaust noise was reduced without increasing backpressure.
Technical Paper

Optimization of Profile fo r Reduction of Piston Slap Excitation

2004-09-27
2004-32-0022
This paper presents an analytical model for the prediction of piston secondary motion and the vibration due to piston slap. For the modeling of piston slap phenomenon, cylinder liner is modeled as a several spring-mass system that are connected by modal characteristics, and lubricant film between the piston and the cylinder is modeled as reaction force vectors which excite resonant mode of them. By comparing experimental results and analytical ones, the validity of the proposed model has been confirmed. The optimization of the piston skirt profile is also carried out with the analytical model, and it is confirmed that the round shape of the lower part of piston skirt is effective for the reduction of piston slap excitation.
Technical Paper

A Stiffness Optimization Procedure for Automobile Rubber Mounts

2001-04-30
2001-01-1445
Generally, it is well known that road noise generated by vibration from automobile tires and suspensions can be reduced by changing the stiffness of the rubber mounts installed in the suspension systems. Such stiffness, however, is rarely changed to avoid riding discomfort and so on. In this paper, a stiffness optimization method for suspension system rubber mounts that reduces road noise, and improves riding comfort as well, is presented. In the process, Road Noise Contribution Analysis (RNCA) is applied to the target vehicle to specify the major factors of road noise. Furthermore, the suspension system of the vehicle is investigated by Sensitivity Analysis using Measured FRF data (SAMF) to identify the optimal stiffness combination of rubber mounts. As a result, an effective stiffness combination of two mounts is specified to reduce road noise and to improve riding comfort.
Technical Paper

Reduction of Piston Slap Excitation with Optimization of Piston Profile

2000-06-12
2000-05-0317
This paper presents the analytical method of piston secondary motion with an experimental verification for a small gasoline engine. To analyze the vibration, a modeling of the piston secondary motion is carried out and numerical simulation is performed. In this method, both dynamic characteristics of the part of piston skirt and cylinder liner are taken into consideration. As compared the simulated results with the experimental results, the validity of presented model has been confirmed and this numerical model is effective to comprehend the piston slap secondary motion.
Technical Paper

Structural Optimization of Tractor Frame for Noise and Vibration Reduction

1999-09-14
1999-01-2822
In this paper, the modeling technique of the dynamic characteristics of the monocoque-type tractor frame, and the reduction technique of the noise and vibration of the tractor by the design modification of the frame are proposed. First, the vibration characteristics on each part of the tractor, and the noise characteristic in the cabin are measured. Secondly, the full-structure of the frame is separated into the sub-structures of cases and joint parts, and each one is modeled. Then, the model accuracy is improved by using the model tuning method with the sensitivity analysis. Finally, the design change of the frame is carried out with the object of increasing stiffness while reducing weight. As the result of this modification, the cabin noise level can be effectively suppressed about 4 [dB].
X