Refine Your Search

Search Results

Technical Paper

Developing a 55% BTE Commercial Heavy-Duty Opposed-Piston Engine without a Waste Heat Recovery System

2017-03-28
2017-01-0638
Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.
Technical Paper

Effects of Injection Pattern Design on Piston Thermal Management in an Opposed-Piston Two-Stroke Engine

2013-09-24
2013-01-2423
This paper presents analytical and measured results on the effects of injection pattern design on piston thermal management in an Opposed-Piston, Two-Stroke (OP2S) diesel engine. The OP2S architecture investigated in this work comprises two opposing pistons forming an asymmetric combustion chamber with two opposing injectors mounted on the cylinder wall. This unique configuration offers opportunities to tailor the injection pattern to control the combustion heat flux and resulting temperatures on the piston surfaces while optimizing combustion simultaneously. This study utilizes three-dimensional (3D) computational fluid dynamics (CFD) with state-of-the-art spray, turbulence and combustion models that include detailed chemistry to simulate the in-cylinder combustion and the associated flame/wall interactions. In addition, the measurements comprise a real-time thermocouple system, which allows for up to 14 locations to be monitored and recorded on the intake and exhaust pistons.
Technical Paper

Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion

2010-04-12
2010-01-0340
This study explores an Adaptive Injection Strategy (AIS) that employs multiple injections at both low and high pressures to reduce spray-wall impingement, control combustion phasing, and limit pressure rise rates in a Premixed Compression Ignition (PCI) engine. Previous computational studies have shown that reducing the injection pressure of early injections can prevent spray-wall impingement caused by long liquid penetration lengths. This research focuses on understanding the performance and emissions benefits of low and high pressure split injections through experimental parametric sweeps of a 0.48 L single-cylinder test engine operating at 2000 rev/min and 5.5 bar nominal IMEP. This study examines the effects of 2nd injection pressure, EGR, swirl ratio, and 1st and 2nd injection timing, for both single heat release and two-peak high temperature heat release cases. In order to investigate the AIS concept experimentally, a Variable Injection Pressure (VIP) system was developed.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Technical Paper

Model-Based Feed-Forward Control of Diesel HCCI Engine Transients

2009-04-20
2009-01-1133
System level modeling was used to develop a suitable control strategy for Diesel Homogeneous Charge Compression Ignition (HCCI) transient operation. Intake temperature and pressure, engine speed, engine load, cylinder wall temperature, exhaust gas recirculation, etc. all significantly affect combustion phasing generating a scenario where simple ECU mapping techniques prove inadequate. Two-stage fuels such as diesel fuel pose additional challenges for accurate combustion control. Low-temperature cool-flame chemical heat release can significantly alter the thermodynamic state of the trapped gaseous mixture and hence combustion phasing. Operator and environmentally induced transients can rapidly alter combustion phasing parameters suggesting a need for model-based control. A model-based control strategy featuring the identified essential physics has been developed to control diesel HCCI combustion phasing through transient operation.
Technical Paper

Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine

2009-04-20
2009-01-0714
Two advanced combustion models have been validated with the KIVA-3V Release 2 code in the context of two-stage combustion in a heavy duty diesel engine. The first model uses CHEMKIN to directly integrate chemistry in each computational cell. The second model accounts for flame propagation with the G-equation, and CHEMKIN predicts autoignition and handles chemistry ahead of and behind the flame front. A Damköhler number criterion was used in flame containing cells to characterize the local mixing status and determine whether heat release and species change should be a result of flame propagation or volumetric heat release. The purpose of this criterion is to make use of physical and chemical time scales to determine the most appropriate chemistry model, depending on the mixture composition and thermodynamic properties of the gas in each computational cell.
Technical Paper

A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients

2006-04-03
2006-01-1084
A comprehensive system level modeling approach is used to understand the effects of the various physical actuators during diesel HCCI transients. Control concepts during transient operations are simulated using a set of actuators suitable for combustion control in diesel HCCI engines (intake valve actuation, injection timing, cooled EGR, intake boost pressure and droplet size). The impact of these actuating techniques on the overall engine performance is quantified by investigating the amount of actuation required, timing of actuation and the use of a combination of actuators. Combined actuation improved actuation space that can be used to phase combustion timing better and in extending the operating range. The results from transient simulations indicate that diesel HCCI operation would benefit from the combined actuation of intake valve closure, injection timing, boost and cooled EGR.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

Effects of Mixing on Early Injection Diesel Combustion

2005-04-11
2005-01-0154
Ignition dwell is defined as the interval between end of fuel injection and start of combustion in early injection diesel combustion that exhibits HCCI-like characteristics. In this project, the impact of in-cylinder temperature and fuel-air mixing on the ignition dwell was investigated. The engine cycle was simulated using the 3-D CFD code KIVA-3V. Work done by Klingbeil (2002) has shown that ignition dwell allows more time for fuel and air to mix and drastically reduces emissions of NOX and particulate matter. Temperature is known to have a direct impact on the duration of ignition dwell. However, initial fuel-air distribution and mixing (i.e. at the end of fuel injection) may also impact the duration of ignition dwell. To investigate this, variations in EGR, fuel injection timing, engine valve actuation and swirl were simulated. The aim was to use these techniques to generate varying levels of fuel-air mixing and to check if ignition dwell was affected.
Technical Paper

Cycle Simulation Diesel HCCI Modeling Studies and Control

2004-10-25
2004-01-2997
An integrated system based modeling approach has been developed to understand early Direct Injection (DI) Diesel Homogeneous Charge Compression Ignition (HCCI) process. GT-Power, a commercial one-dimensional (1-D) engine cycle code has been coupled with an external cylinder model which incorporates sub-models for fuel injection, vaporization, detailed chemistry calculations (Chemkin), heat transfer, energy conservation and species conservation. In order to improve the modeling accuracy, a multi-zone model has been implemented to account for temperature and fuel stratifications in the cylinder charge. The predictions from the coupled simulation have been compared with experimental data from a single cylinder Caterpillar truck engine modified for Diesel HCCI operation. A parametric study is conducted to examine the effect of combustion timing on four major control parameters. Overall the results show good agreement of the trends between the experiments and model predictions.
Technical Paper

Optimization of Diesel Engine Operating Parameters Using Neural Networks

2003-10-27
2003-01-3228
Neural networks are useful tools for optimization studies since they are very fast, so that while capturing the accuracy of multi-dimensional CFD calculations or experimental data, they can be run numerous times as required by many optimization techniques. This paper describes how a set of neural networks trained on a multi-dimensional CFD code to predict pressure, temperature, heat flux, torque and emissions, have been used by a genetic algorithm in combination with a hill-climbing type algorithm to optimize operating parameters of a diesel engine over the entire speed-torque map of the engine. The optimized parameters are mass of fuel injected per cycle, shape of the injection profile for dual split injection, start of injection, EGR level and boost pressure. These have been optimized for minimum emissions. Another set of neural networks have been trained to predict the optimized parameters, based on the speed-torque point of the engine.
Technical Paper

Neural Cylinder Model and Its Transient Results

2003-10-27
2003-01-3232
A cylinder model was developed using artificial neural networks (ANN). The cylinder model utilized the trained ANN models to predict engine parameters including cylinder pressures, cylinder temperatures, cylinder wall heat transfer, NOx and soot emissions. The ANN models were trained to approximate CFD simulation results of an engine. The ANN cylinder model was then applied to predict engine performance and emissions over the standard heavy-duty FTP transient cycle. The engine responses varying over the engine speed and torque range were simulated in the course of the transient test cycle. It was demonstrated that the ANN cylinder model is capable of simulating the characteristics of the engine operating under transient conditions reasonably well.
Technical Paper

Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

2002-10-21
2002-01-2772
Artificial neural networks (ANN) have been recognized as universal approximators for nonlinear continuous functions and actively applied in engine research in recent years [1, 2, 3, 4, 5, 6, 7 and 8]. This paper describes the methodology and results of using the ANN to model a turbocharged DI diesel engine. The engine was simulated using the CFD code (KIVA-ERC) over a wide range of operating conditions, and numerical simulation results were used to train the ANN. An efficient data collection methodology using the Design of Experiments (DOE) techniques was developed to select the most characteristic engine operating conditions and hence the most informative data to train the ANN. This approach minimizes the time and cost of collecting training data from either computational or experimental resources. The trained ANN was then used to predict engine parameters such as cylinder pressure, cylinder temperature, NOx and soot emissions, and cylinder heat transfer.
Technical Paper

Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion

2002-06-03
2002-01-1925
The present study investigated HCCI combustion in a heavy-duty diesel engine both experimentally and numerically. The engine was equipped with a hollow-cone pressure-swirl injector using gasoline direct injection. Characteristics of HCCI combustion were obtained by very early injection with a heated intake charge. Experimental results showed an increase in NOx emission and a decrease in UHC as the injection timing was retarded. It was also found that optimization can be achieved by controlling the intake temperature together with the start-of-injection timing. The experiments were modeled by using an engine CFD code with detailed chemistry. The CHEMKIN code was implemented into KIVA-3V such that the chemistry and flow solutions were coupled. The model predicted ignition timing, cylinder pressure, and heat release rates reasonably well. The NOx emissions were found to increase as the injection timing was retarded, in agreement with experimental results.
Technical Paper

Modelling of Spray and In-cylinder Air Flow Interaction in Direct-Injection Engines

2001-11-01
2001-28-0071
A model is developed based on Lagrangian-drop and Eulerian-fluid procedure to simulate fuel spray structure and the interaction of spray with in-cylinder gas motion. The hollow cone spray is modeled assuming the sheet consisting of blobs of droplets and these blobs are further subjected to secondary breakup. The droplet equations of position, momentum and temperature have been solved by the fourth order Runge-Kutta scheme. The gas phase compressible flow is solved using the finite volume method in conjunction with the SIMPLEC algorithm. The coupling between gas phase and the liquid phase has been achieved through the source terms arising in each phase. Three-dimensional spray and interaction with air motion inside the cylinder have been performed. The results show that the spray structure is well simulated. The model predicts the entrained air velocities and the fuel vapour concentration distribution as a function of time.
Technical Paper

Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine

1999-10-25
1999-01-3657
Numerical simulations are performed to investigate the fuel/air mixing preparation in a gasoline direct injection (GDI) engine. A two-valve OHV engine with wedge combustion chamber is investigated since automobiles equipped with this type of engine are readily available in the U.S. market. Modifying and retrofitting these engines for GDI operation could become a viable scenario for some engine manufactures. A pressure-swirl injector and wide spacing injection layout are adapted to enhance mixture preparation. The primary interest is on preparing the mixture with adequate equivalence ratio at the spark plug under a wide range of engine operating conditions. Two different engine operating conditions are investigated with respect to engine speed and load. A modified version of the KIVA-3V multi-dimensional CFD code is used. The modified code includes the Linearized Instability Sheet Atomization (LISA) model to simulate the development of the hollow cone spray.
Technical Paper

Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays

1998-02-23
980132
To help account for fuel distribution during combustion in diesel engines, a fuel film model has been developed and implemented into the KIVA-II code [1]. Spray-wall interaction and spray-film interaction are also incorporated into the model. Modified wall functions for evaporating, wavy films are developed and tested. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity, momentum and energy equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, dynamic pressure effects, and convective heat and mass transfer.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
X