Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

Developing a 55% BTE Commercial Heavy-Duty Opposed-Piston Engine without a Waste Heat Recovery System

2017-03-28
2017-01-0638
Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.
Technical Paper

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-1696
In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl.
Technical Paper

Effects of Injection Pattern Design on Piston Thermal Management in an Opposed-Piston Two-Stroke Engine

2013-09-24
2013-01-2423
This paper presents analytical and measured results on the effects of injection pattern design on piston thermal management in an Opposed-Piston, Two-Stroke (OP2S) diesel engine. The OP2S architecture investigated in this work comprises two opposing pistons forming an asymmetric combustion chamber with two opposing injectors mounted on the cylinder wall. This unique configuration offers opportunities to tailor the injection pattern to control the combustion heat flux and resulting temperatures on the piston surfaces while optimizing combustion simultaneously. This study utilizes three-dimensional (3D) computational fluid dynamics (CFD) with state-of-the-art spray, turbulence and combustion models that include detailed chemistry to simulate the in-cylinder combustion and the associated flame/wall interactions. In addition, the measurements comprise a real-time thermocouple system, which allows for up to 14 locations to be monitored and recorded on the intake and exhaust pistons.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion

2010-04-12
2010-01-0340
This study explores an Adaptive Injection Strategy (AIS) that employs multiple injections at both low and high pressures to reduce spray-wall impingement, control combustion phasing, and limit pressure rise rates in a Premixed Compression Ignition (PCI) engine. Previous computational studies have shown that reducing the injection pressure of early injections can prevent spray-wall impingement caused by long liquid penetration lengths. This research focuses on understanding the performance and emissions benefits of low and high pressure split injections through experimental parametric sweeps of a 0.48 L single-cylinder test engine operating at 2000 rev/min and 5.5 bar nominal IMEP. This study examines the effects of 2nd injection pressure, EGR, swirl ratio, and 1st and 2nd injection timing, for both single heat release and two-peak high temperature heat release cases. In order to investigate the AIS concept experimentally, a Variable Injection Pressure (VIP) system was developed.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions

2005-10-24
2005-01-3837
The effects of charge dilution on low-temperature diesel combustion and emissions were investigated in a small-bore single-cylinder diesel engine over a wide range of injection timing. The fresh air was diluted with additional N2 and CO2, simulating 0 to 65% exhaust gas recirculation in an engine. Diluting the intake charge lowers the flame temperature T due to the reactant being replaced by inert gases with increased heat capacity. In addition, charge dilution is anticipated to influence the local charge equivalence ratio ϕ prior to ignition due to the lower O2 concentration and longer ignition delay periods. By influencing both ϕ and T, charge dilution impacts the path representing the progress of the combustion process in the ϕ-T plane, and offers the potential of avoiding both soot and NOx formation.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-04-11
2005-01-0121
Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process.
Technical Paper

Experimental Analysis on Soot Formation Process In DI Diesel Combustion Chamber by Use of Optical Diagnostics

2002-03-04
2002-01-0893
Soot formation process inside the combustion chamber of an DI diesel engine is focused as a phenomenological basic scheme by using several optical diagnostics technique for the improvement of diesel exhaust emission. We have conducted the series of optical measurement research for the clarification of combustion field in an DI diesel engine. Then, this paper is a kind of review by adding the fuel vapor properties and particle image velocimetry (PIV) analysis with focusing the soot formation process. The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The spray characteristics and its flow field in 2-D field were measured by laser sheet scattering (LIS) method and PIV scheme.
Technical Paper

Diesel Engine Model Development and Experiments

1995-04-01
951200
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
X