Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
Journal Article

Optimal Direct Yaw Controller Design for Vehicle Systems with Human Driver

2011-09-13
2011-01-2149
Dynamic game theory brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Technical Paper

Semiactive Fuzzy Logic Control for Heavy Truck Primary Suspensions: Is it Effective?

2005-11-01
2005-01-3542
Using a simulation model, this study intends to provide a preliminary evaluation of whether semiactive dampers are beneficial to improving ride and handling in class 8 trucks. One of the great challenges in designing a truck suspension system is maintaining a good balance between vehicle ride and handling. The suspension components are often designed with great care for handling, while maintaining good comfort. For Class 8 trucks, the vehicle comfort is also greatly affected by the cab and seat suspensions. Dampers for passive suspensions are tuned “optimally,” using various metrics that the ride engineer may consider, for the condition in which the truck operates most frequently. In recent years, the popularity of semiactive dampers in passenger vehicles has prompted the possibility of considering them for class 8 trucks. In this study, the vehicle safety versus ride comfort trade-off is studied for a certain class of suspensions with semiactive fuzzy control.
Technical Paper

The Challenge of Designing a Semiactive Damper for Heavy Truck Seat Suspensions

2005-11-01
2005-01-3544
The close proximity of seat suspensions to human body presents several challenges in terms of the perception of the suspension forces by the vehicle operator. This is particularly true of the suspensions with time-varying forces, such as semiactive seat suspensions. The major challenge in such suspensions is changing the suspension force from one state to under, without causing excessive amounts of dynamic jerk. This paper looks into the cause of dynamic jerk in semiactive suspensions with skyhook control, and presents two alternative implementations of skyhook control, called “no-jerk skyhook,” and “skyhook function,” for the purpose of this study. An analysis of the relationship between absolute velocity of the sprung mass and the relative velocity across the suspension is used to show the damping force discontinuities that result from skyhook control.
Technical Paper

Field Study to Evaluate Driver Fatigue Performance in Air-Inflated Truck Seat Cushions - Objective Results

2005-04-11
2005-01-1008
This study reports the objective results from a project investigating the effectiveness of several newly proposed metrics to compare fatigue performance between two distinct truck seat cushions, specifically standard foam versus air-inflated cushions. The subjective results from this project have shown the drivers in our study prefer the air-inflated seat cushion over their normal foam cushion, and that air-inflated seat cushions provide advantages in terms of comfort, support, and fatigue [1]. This study aims to further explore the differences between these two different seat cushions by highlighting the differences in objective pressure distribution measurements. Road tests were performed using existing commercial trucks in the daily operations of Averitt Express. A retrofit air-inflated seat cushion was installed in the fleet's trucks, and the drivers were allowed to adjust to the seats over approximately one week.
Technical Paper

Dynamic Influence of Frame Stiffness on Heavy Truck Ride Evaluation

2004-10-26
2004-01-2623
This experimental study determines the effect of truck frame stiffness on truck ride, as measured by B-post vertical and fore-aft accelerations. After describing the test setup, the paper will describe the details of two truck frames that are used in a series of tests conducted on a class-8 truck in the laboratory. The frames that are used for the tests include what commonly is used in production trucks in North American markets (called “baseline” frame), and a frame that is 15% thinner (called “thin” frame). The test results, which are analyzed in frequency domain, are compared for the two frames. They indicate that the thin frame performs similar to the baseline frame when the truck is subjected to heave inputs. For roll inputs, the thin frame causes an increase in B-post accelerations, mostly at frequencies associated with the frame beaming and the primary (axle) suspension resonance.
Technical Paper

Field Study to Evaluate Driver Fatigue Performance in Air-Inflated Truck Seat Cushions - Subjective Results

2004-10-26
2004-01-2650
This study reports the subjective results from a project investigating the effectiveness of several newly proposed metrics to compare fatigue performance between two distinct truck seat cushions, specifically standard foam versus air-inflated cushions. We also highlight some of the fundamental differences between air-inflated and foam seat cushion based on driver's perceptions. Road tests were performed using existing commercial trucks in the daily operations of Averitt Express. A retrofit air-inflated seat cushion was installed in the fleet's trucks, and the drivers were allowed to adjust to the seats over approximately one week. After this adjustment period, twelve drivers rode on both the air-inflated seat cushion and their original foam seat cushion during their regularly scheduled routes. Surveys were collected throughout the test sessions and the truck seats were fitted with instrumentation to capture physical measurements of seat pressure distribution.
Technical Paper

Effect of Panhard Rod Cab Suspensions on Heavy Truck Ride Measurements

2004-10-26
2004-01-2710
This study provides an experimental account of the effect of panhard rod suspensions on heavy truck ride, as evaluated by the B-post vertical and fore-aft accelerations. After describing the test setup, the paper will describe the details of two rear cab suspensions that are commonly used in North American trucks. Cab suspensions with dampers or similar elements that are used to provide lateral forces at the rear of the cab (called “baseline” cab suspension for the purpose of this study) and those that use a lateral link with a torsion spring at one end-commonly called “panhard rod”-are the two classes of rear cab suspensions that are considered in this study. The tests are performed on a class 8 truck that is setup in the laboratory for the purpose of providing good test repeatability and conducting an accurate design of experiment. The test results, which are analyzed in frequency domain, are compared for the two cab suspensions.
Technical Paper

A Numerical Evaluation of the Suspension and Driveline Dynamic Coupling in Heavy Trucks

2004-10-26
2004-01-2711
This study provides a numerical evaluation of the dynamic coupling that exists between the powertrain, suspensions, and tire dynamics in class 8 trucks. The spatial dynamics of the driveline, including the offset angels that commonly exist in practice, are modeled along with a lumped-parameter representation of the suspension and tire dynamics in vertical, longitudinal, and torsional directions. The model is used to show how the suspension dynamics and the angle change that it causes in driveline geometry can affect the vibrations resulting from the powertrain. The numerical model is also used for a parametric study in which the effect of various suspension and powertrain parameters on the dynamic coupling that exists between the two is evaluated.
Technical Paper

A Frequency Analysis of Semiactive Control Methods for Vehicle Application

2004-05-04
2004-01-2098
The performance of five different skyhook control methods is studied experimentally, using a quarter-car rig. The control methods that are analyzed include: skyhook control, groundhook control, hybrid control, displacement skyhook, and relative displacement skyhook. Upon evaluating the performance of each method in frequency domain for various control conditions, they are compared with each other as well as with passive damping. The results indicate that no one control method outperforms other control methods at both the sprung and unsprung mass natural frequencies. Each method can perform better than the other control methods in some respect. Hybrid control, however, comes close to providing the best compromise between different dynamic demands on a primary suspension. The results indicate that hybrid control can offer benefits to both the sprung and unsprung mass with control gain settings that provide equal contributions from skyhook control and groundhook control.
Technical Paper

A Comparative Analysis of Air-inflated and Foam Seat Cushions for Truck Seats

2002-11-18
2002-01-3108
A comprehensive comparison between an air-inflated seat cushion designed for truck seats and a commonly used foam cushion is provided, using a single-axis test rig designed for seat dynamic testing. Different types of tests were conducted in order to evaluate various aspects of each type of cushion; in terms of their response to narrowband (single frequency) dynamics, broadband input of the type that is commonly used in the trucking industry for testing seats, and a step input for assessing the damping characteristics of each cushion. The tests were conducted over a twelve-hour period—in four-hour intervals—measuring the changes that occur at the seat cushion over time and assessing how these changes can affect the metrics that are used for evaluating the cushions. The tests indicated a greater stiffening of the foam cushion over time, as compared with the air-inflated cushion that showed almost no change in stiffness when exposed to a static weight for twelve hours.
Technical Paper

The Virginia Tech Center for Transportation Research “Smart Truck” - An Instrumented Heavy Vehicle for Evaluation of Intelligent Transportaltion Systems

1997-11-17
973186
The objective of this paper is to describe a Class 8 heavy truck that the Virginia Tech Center for Transportation Research has modified and instrumented for use in evaluating Intelligent Transportation Systems (ITS) technologies. The truck is capable of recording a variety of data, both electronic and video, in real-time from a suite of sensors and cameras that have been inconspicuously mounted on the tractor. The tractor, trailer, and instrumentation package enable Virginia Tech to conduct commercial vehicle ITS research related to safety and human factors, and advanced vehicle control systems (AVCS). This paper will describe the instrumentation package, and address both general and specific types of research that can be performed using this truck.
Technical Paper

Effects of Passive and Semi-Active Suspensions on Body and Wheel Hop Control

1989-11-01
892487
The effect of primary suspensions (shock absorbers) on the body and axle motion of heavy trucks is investigated. A simulation program is used to show how damper tuning of conventional passive dampers and “skyhook” semiactive dampers effect ride, as measured by body acceleration, and axle motion, as measured by tire acceleration and tire deflection. Special attention is made to the coupling and interaction between the body and the axle motion. It is shown that passive and semiactive dampers have a different effect on the axle and body dynamics.
X