Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

An optimized, data-driven reaction mechanism for Dual-Fuel combustion of Ammonia and Diesel Primary Reference Fuels

2023-09-29
2023-32-0101
The possibility to operate current diesel engines in dual-fuel mode with the addition of an alternative fuel is fundamental to accelerate the energy transition to achieve carbon neutrality. The simulation of the dual- fuel combustion process with 0D/1D combustion models is fundamental for the performance prediction, but still particularly challenging, due to chemical interactions of the mixture. The authors defined a novel data-driven workflow for the development of combustion reaction mechanisms and used it to generate a dual-fuel mechanism for Ammonia and Diesel Primary Reference Fuels (DPRF) suitable for efficient combustion simulations in heavy duty engines, with variable cetane number Diesel fuels. A baseline reaction mechanism was created by merging the detailed ammonia mechanism by Glarborg et al. with reaction pathways for n- hexadecane and 2,2,4,4,6,8,8-heptamethylnonane from a well-established multi-component fuel mechanism.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

Thermal Efficiency Enhancement of a Turbocharged Diesel Engine Dedicated for Hybrid Commercial Vehicle Application

2022-10-28
2022-01-7053
Hybrid powertrain has been proven to be an effective fuel-saving technology in commercial vehicles, but many hybrid commercial vehicles still use conventional diesel engines, resulting in limited fuel savings. The main purpose of this study is to enhance the thermal efficiency of a dedicated hybrid diesel engine focusing on the characteristic operating conditions. Via fundamental thermodynamics process analysis of internal combustion engine, steel piston with high compression ratio, air system involving two-stage turbocharger(2TC) with an intercooler, and late intake valve closing(IVC) timing are proposed to improve the thermal efficiency of the engine. Experimental results show that high compression ratio and lower thermal conductivity of the combustion chamber surface lead to lower heat release rates, requiring optimization of piston profile to accelerate the mixing rate. Besides, high compression ratio also leads to higher mechanical losses.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Journal Article

Fuel Stratification Effects on Gasoline Compression Ignition with a Regular-Grade Gasoline on a Single-Cylinder Medium-Duty Diesel Engine at Low Load

2021-09-21
2021-01-1173
Prior research studies have investigated a wide variety of gasoline compression ignition (GCI) injection strategies and the resulting fuel stratification levels to maintain control over the combustion phasing, duration, and heat release rate. Previous GCI research at the US Department of Energy’s Oak Ridge National Laboratory has shown that for a combustion mode with a low degree of fuel stratification, called “partial fuel stratification” (PFS), gasoline range fuels with anti-knock index values in the range of regular-grade gasoline (~87 anti-knock index or higher) provides very little controllability over the timing of combustion without significant boost pressures. On the contrary, heavy fuel stratification (HFS) provides control over combustion phasing but has challenges achieving low temperature combustion operation, which has the benefits of low NOX and soot emissions, because of the air handling burdens associated with the required high exhaust gas recirculation rates.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Impact of Multimode Range and Location on Urban Fuel Economy on a Light-Duty Spark-Ignition Based Powertrain Using Vehicle System Simulations

2020-04-14
2020-01-1018
Multimode engine operation uses two or more combustion modes to maximize engine efficiency across the operational range of a vehicle to achieve higher overall vehicle fuel economy than is possible with a single combustion mode. More specifically for this study, multimode solutions are explored that make use of boosted SI under high load operation and other advanced combustion modes such as advanced compression ignition (ACI) under part-load conditions to enable additional engine efficiency improvements across a broader range of the engine operating map. ACI combustion has well-documented potential to improve efficiency and emissions under part-load operation but poses challenges that limit full engine speed-load range. This study investigates the potential impact of ACI operational range on simulated fuel economy to help focus research on areas with the most opportunity for improving fuel economy.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

2019-12-19
2019-01-2184
OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Natural Flame Luminosity and Emission Spectra of Diesel Spray Flame under Oxygen-Enriched Condition in an Optical Constant Volume Vessel

2018-09-10
2018-01-1781
The application of oxygen-enriched or oxy-fuel combustion coupled with carbon capture and storage technology has zero carbon dioxide emission potential in the boiler and gas turbine of the power plant. However, the oxygen-enriched combustion with high oxygen level has few studies in internal combustion engines. The fundamental issues and challenges of high oxygen level are the great differences in the physical properties and chemical effects compared with the combustion in air condition. As a consequence, the diesel spray combustion characteristics at high oxygen level were investigated in an optical constant volume vessel. The oxygen volume fraction of tested gas was from 21% to 70%, buffered with argon. The high-speed color camera was used to record the natural flame luminosity.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
Technical Paper

Ignition Delay in Low Temperature Combustion

2018-04-03
2018-01-1125
Low temperature combustion (LTC) strategies present a means of reducing soot and oxides of nitrogen (NOx) emissions while simultaneously increasing efficiency relative to conventional combustion modes. By sufficiently premixing fuel and air before combustion, LTC strategies avoid high fuel-to-air equivalence ratios that lead to soot production. Dilution of the mixture lowers the combustion temperatures to reduce NOx production and offers thermodynamic advantages for improved efficiency. However, issues such as high heat release rates (HRRs), incomplete combustion, and difficulty in controlling the timing of combustion arise with low equivalence ratios and combustion temperatures. Ignition delay (the time until the start of combustion) is a way to quantify the time available for fuel and air to mix inside the cylinder before combustion. Previous studies have used ignition delay to explain trends seen in LTC such as combustion stability and HRRs.
Technical Paper

Experimental Investigation on the Effects of Injection Strategy on Combustion and Emission in a Heavy-Duty Diesel Engine Fueled with Gasoline

2017-10-08
2017-01-2266
Gasoline partially premixed combustion shows the potential to achieve clean and high-efficiency combustion. Injection strategies show great influence on in-cylinder air flow and in-cylinder fuel distribution before auto-ignition, which can significantly affect the combustion characteristics and emissions. This study explored the effects of various injection strategies, including port fuel injection (PFI), single direct injection (DIm), double direct injection (DIp+DIm) and port fuel injection coupled with a direct injection (PFI+DIm) on the combustion characteristics and emissions in a modified single cylinder heavy-duty diesel engine fueled with 92# gasoline at low load. The investigation consists of two parts. Firstly, the comparison among PFI, PFI+DIm, and DIp+DIm strategies was conducted at a fixed CA50 to explore the effects of PFI+DIm and DIp+DIm strategies on the thermal efficiency and combustion stability.
Technical Paper

Combustion Characteristics of Wall-Impinging Diesel Fuel Spray under Different Wall Temperatures

2017-10-08
2017-01-2251
The flame structure and combustion characteristics of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set to 773 K. The wall temperatures (Tw) were set to 523 K, 673 K and 773 K respectively. Three different injection pressures (Pi) of 600 bar, 1000bar and 1600bar, two ambient pressures (Pa) of 2 MPa and 4 MPa were applied. The flame development process of wall-impinging spray was measured by high-speed photography, which was utilized to quantify the flame luminosity intensity, ignition delay and flame geometrical parameters. The results reveal that, as the wall temperature increases, the flame luminosity intensity increases and the ignition delay decreases.
Journal Article

RCCI Combustion Regime Transitions in a Single-Cylinder Optical Engine and a Multi-Cylinder Metal Engine

2017-09-04
2017-24-0088
Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels with differing reactivity (i.e., autoignition characteristics) to control combustion phasing. Stratification can be altered by varying the injection timing of the high-reactivity fuel, causing transitions across multiple regimes of combustion. When injection is sufficiently early, combustion approaches a highly-premixed autoignition regime, and when it is sufficiently late it approaches more mixing-controlled, diesel-like conditions. Engine performance, emissions, and control authority over combustion phasing with injection timing are most favorable in between, within the RCCI regime.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

A Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode

2017-03-28
2017-01-1027
On-board fuel reforming offers a prospective clean combustion mode for the engines. The flexible cylinder engine strategy (FCE) is a new kind of such mode. In this paper, the combustion of the primary reference fuel of PRF90 was theoretically investigated in a homogeneous charge compression ignition engine to validate the FCE mode, mainly focusing on the ignition delay time, the flame speed, and the emissions. The simulations were performed by using the CHEMKIN2.0 package to demonstrate the fuel reforming process in the flexible cylinder, the cooling effect on the reformed products, and the combustions of the mixture of the fresh fuel and the reformed products in the normal cylinders. It was found that the FCE mode decreased the ignition delay time of the fuel by about 35 crank angles at a typical engine condition.
Journal Article

Simultaneous Measurement of Natural Flame Luminosity and Emission Spectra in a RCCI Engine under Different Fuel Stratification Degrees

2017-03-28
2017-01-0714
Reactivity controlled compression ignition (RCCI) is a potential combustion strategy to achieve high engine efficiency with ultra-low NOx and soot emissions. Fuel stratification can be used to control the heat release rate of RCCI combustion. But the in-cylinder combustion process of the RCCI under different fuel stratification degrees has not been well understood, especially at a higher engine load. In this paper, simultaneous measurement of natural flame luminosity and emission spectra was carried out on a light-duty optical RCCI engine under different fuel stratification degrees. The engine was run at 1200 revolutions per minute under a load about 7 bar indicated mean effective pressure (IMEP). In order to form fuel stratification degrees from low to high, the common-rail injection timing of n-heptane was changed from -180° CA after top dead center (ATDC) to -10° CA ATDC, while the iso-octane delivered in the intake stroke was fixed.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
X