Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Headform Development for Neck Calibrating Tests of the SID-IIs Side Impact Dummy

2001-03-05
2001-01-0121
The SID-IIs side impact dummy is a newly designed dummy as an anthropomorphic test device for small size person to be used in side impact crash testing. The head and neck are one of the key components for SID-IIs dummy designing, manufacturing, and testing. This paper is focused on the development of a Headform to be used for neck calibration of the SID-IIs side impact dummy. It will be very difficult in neck calibration measurement of the SID-IIs dummy if its head is used for the test directly. The Headform is one of the methods to solve this problem. However, the Headform must be consistent in achieving equivalent functional performance as the dummy head and associated physical properties. A 3-D head model has been developed for obtaining initial basic information. The offset can be controlled within 3% during the engineering design of the Headform. The neck dynamic test has been done before the Headform test.
Technical Paper

Creating a Biofidelic Seating Surrogate

1999-03-01
1999-01-0627
In order to more accurately simulate the load distributions and histories experienced by automotive seats in field use, more biofidelic motion and loading devices are needed. A new test dummy was developed by Lear Corporation and First Technology Safety Systems. This dummy uses exact skeletal geometry encased in a one-piece seamless mold with contours based on ASPECT data. A prototype was constructed and tested to demonstrate the efficacy of the concept. The skeleton and contour molds were created from CAD-generated rapid prototypes. The flesh was carefully formulated to have the mechanical properties of bulk muscular tissue in a state of moderate contraction, using data from the literature. This design allows much greater accuracy in reproducing human loads than was ever possible previously. The design has applications in durability, vibration and comfort testing.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
X