Refine Your Search

Topic

Search Results

Standard

Introduction to Oxygen Equipment for Aircraft

2021-08-11
CURRENT
AIR825/1
The purpose of this document is to give the reader an overview of the document package which makes up AIR825, Introduction to Oxygen Equipment for Aircraft, and a basic overview (see Section 4) of the operational concerns driven by human physiology during altitude exposure.
Standard

Testing of Oxygen Equipment

2021-08-11
CURRENT
ARP1398A
This ARP delineates requirements for system cleanliness, test gas supply system, test stand design, environmental chamber definition, instrumentation, dynamic test equipment and testing procedures.
Standard

Passenger Oxygen Mask

2021-08-11
CURRENT
AS8025A
This standard covers oronasal type masks which use a continuous flow oxygen supply. Each such mask comprises a facepiece with valves as required, a mask suspension device, a reservoir, or rebreather bag (when used), a length of tubing for connection to the oxygen supply source, and a means for allowing the crew to determine if oxygen is being delivered to the mask. The assembly shall be capable of being stowed suitably to meet the requirements of its intended use.
Standard

Personal Protective Devices for Toxic and Irritating Atmospheres Air Transport Flight Deck (Sedentary) Crewmembers

2020-09-03
WIP
AS8031B
This SAE Aerospace Standard (AS) covers any protection system that serves the stated purpose. This document establishes minimum performance requirements for emergency equipment, which provides flight deck (sedentary) crewmembers with eye and respiratory protection from toxic atmospheres during in-flight emergencies. Defintion of sedentary: "sedentary" is herein defined as those flight deck crewmembers that remain seated at their flight deck stations throughout the emergency. For those "nonsedentary" cabin crewmembers whose duty it is to leave their flight station during an emergency (for example, to actively locate and fight an on-board fire).
Standard

On-Board Oxygen Generating Systems (Molecular Sieve)

2020-07-14
CURRENT
AIR825/6A
The information provided in AIR825/6 applies to On Board Oxygen Generating Systems (OBOGS) - Molecular Sieve, that utilize the ability of molecular sieve materials by using Pressure Swing Adsorption Process (PSA) to separate and concentrate oxygen in the product gas from the surrounding air, respectively air provided by any compressor or by the aircraft engine (so called: Bleed Air), and to provide this oxygen enriched air or product gas as supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft. The distribution system and the provided oxygen concentration have to fulfill the respective airworthiness regulations. Equipment using this technology is to provide supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft, the suitable breathing gas oxygen partial pressure or oxygen concentration requirements are specified in AIR825/2 and the oxygen purity requirements in AS8010.
Standard

Minimum Standard for Gaseous Oxygen Pressure Reducers

2020-05-27
CURRENT
AS1248B
This standard applies to pressure reducers for gaseous breathing oxygen systems and for all performance profiles without regard to particular inlet or outlet pressures. Attention is given, however, to construction requirements for reducers with maximum supply pressures to 2250 psig (155 bar) and reduced pressures of 50 to 150 psig (3.4 to 10.5 bar).
Standard

Minimum Standard for Gaseous Oxygen Pressure Reducers

2017-11-07
HISTORICAL
AS1248A
This standard applies to pressure reducers for gaseous breathing oxygen systems and for all performance profiles without regard to particular inlet or outlet pressures. Attention is given, however, to construction requirements for reducers with maximum supply pressures to 2250 psig (155 bar) and reduced pressures of 50 to 150 psig (3.4 to 10.5 bar).
Standard

Dynamic Testing Systems for Oxygen Breathing Equipment

2017-11-07
CURRENT
ARP1109B
This SAE Aerospace Recommended Practice (ARP) recommends performance requirements for test equipment used in dynamic testing of aviation oxygen breathing equipment. This document describes test equipment and methods used for testing continuous flow, demand and pressure demand regulators and their associated masks as well as filtered protective breathing devices; such articles of oxygen breathing or protective breathing equipment may be tested as individual components or as a complete system.
Standard

Oxygen Cylinder Installation Guide

2016-11-18
HISTORICAL
ARP5021A
This document provides guidance for oxygen cylinder installation on commercial aircraft based on rules and methods practiced in aerospace industry and applicable in other associations. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is focused on requirements regarding DOT approved oxygen cylinders. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, reference should be made to AIR825/12 also.
Standard

Chemical Oxygen Supplies

2014-10-30
CURRENT
AIR1133B
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard

Oxygen Systems for General Aviation

2014-07-11
CURRENT
AIR822C
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard

Oxygen Equipment for Aircraft

2012-12-03
CURRENT
AIR825D
This report provides information on the design and use of aircraft oxygen systems. It explains the physiological oxygen requirements of the human body in both a normal environment and in an hypoxic environment. It includes an overview of the continuous flow, demand and pressure demand, and liquid oxygen systems. A basic understanding of how each system operates is then specifically addressed in its own titled section. The charts, tables, and schematics provide a specific example of a theoretical oxygen system design and the calculations showing how that system would meet the regulations established by the FAR’s. A comprehensive overview of the theoretical oxygen requirements of the human body at altitude is also provided. A detailed list of specifications and standards applicable to aircraft oxygen systems is included.
Standard

Chemical Oxygen Supplies

2012-10-08
HISTORICAL
AIR1133A
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard

On Board Oxygen Generating Systems (Molecular Sieve)

2012-04-12
HISTORICAL
AIR825/6
The information provided in SAE AIR825/6 applies to On Board Oxygen Generating Systems (OBOGS) - Molecular Sieve, that utilize the ability of molecular sieve materials by using Pressure Swing Adsorption Process (PSA) to separate and concentrate oxygen in the product gas from the surrounding air, respectively air provided by any compressor or by the aircraft engine (so called: Bleed Air), and to provide this oxygen enriched air or product gas as supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft. The distribution system and the provided oxygen concentration have to fulfill the respective FAA/JAA regulations. Equipment using this technology to provide supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft, the suitable breathing gas oxygen partial pressure or oxygen concentration requirements are specified in AIR825/2 and the oxygen purity requirements in AS8010. NOTE: OBOGS has never been certified for commercial aircraft.
Standard

CONTINUOUS FLOW CHEMICAL OXYGEN GENERATORS

2011-08-15
HISTORICAL
AS1304
This Aerospace Standard (AS) provides recommended design guidelines for composition formation, performance, testing and reliability of metal-chlorate-perchlorate class solid chemical oxygen generators, supplying oxygen at essentially ambient pressure, for aircraft whose cabin pressure altitude does not exceed 40,000 feet (12,192 m).
Standard

Oxygen Equipment for Aircraft

2010-12-17
HISTORICAL
AIR825C
This report provides information on the design and use of aircraft oxygen systems. It explains the physiological oxygen requirements of the human body in both a normal environment and in an hypoxic environment. It includes an overview of the continuous flow, demand and pressure demand, and liquid oxygen systems. A basic understanding of how each system operates is then specifically addressed in its own titled section. The charts, tables, and schematics provide a specific example of a theoretical oxygen system design and the calculations showing how that system would meet the regulations established by the FAR’s. A comprehensive overview of the theoretical oxygen requirements of the human body at altitude is also provided. A detailed list of specifications and standards applicable to aircraft oxygen systems is included.
Standard

Oxygen Systems for General Aviation

2006-06-05
HISTORICAL
AIR822B
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
X