Refine Your Search

Topic

Search Results

Technical Paper

Design and Assessment of an Exhaust After-Treatment System Equipped with a Fuel

2023-04-11
2023-01-0355
Reaching near-zero cold start emissions in a wide range of ambient conditions is a challenging, yet necessary objective. Optimizing the combustion, although fundamental to lower specific engine-out emissions, is not sufficient, especially in high-performance engines. A very high after-treatment efficiency from engine start-up onwards is mandatory. Active heating technologies allow quick heating up of after-treatment devices like a three way catalyst above their light-off temperature, regardless of engine operation. In this work, the particular characteristics of a fuel burner were analyzed. The steps that led to the design of an exhaust system equipped with a fuel burner are reported. The fuel burner ability to efficiently heat up after-treatment devices was assessed by numerical simulations and then verified experimentally. Cumulative results were compared with a passive catalyst heating strategy.
Technical Paper

Experimental and Numerical Investigation of Hydrogen Injection and its Preliminary Impact on High Performance Engines Development

2023-04-11
2023-01-0402
Under the proposed Green Deal program, the European Union will aim to achieve zero net greenhouse gas (GHG) emissions by 2050. The interim target is to reduce GHG by 55% by 2030. In the current debate concerning CO2-neutral powertrains, bio-fuels and e-fuels could play an immediate and practical role in reducing lifecycle engine emissions. Hydrogen however, is one of the few practical fuels that can result in near zero CO2 emissions at the tailpipe, which is the main focus of current legislation. Compared to gasoline, hydrogen presents a higher laminar flame speed, a wider range of flammability and higher auto-ignition temperatures, making it among the most attractive of fuels for future engines. As a challenge, hydrogen requires a very low ignition energy. This may imply an increased susceptibility to Low Speed Pre-Ignition (LSPI), surface ignition and back-fire phenomena. In order to exploit hydrogen’s potential, the injection system plays an extremely important role.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Evaluating Surface Film Models for Multi-Dimensional Modeling of Spray-Wall Interaction

2019-04-02
2019-01-0209
Surface film formation is an important phenomenon during spray impingement in a combustion chamber. The film that forms on the chamber walls and piston bowl produces soot post-combustion. While some droplets stick to the wall surface, others splash and interact with the gas present inside the combustion chamber. Accurate prediction of both the film thickness and splashed mass is crucial for surface film model development since it leads to a precise estimation of the amount of soot and other exhaust gases formed. This information could guide future studies aimed at a comprehensive understanding of the combustion process and might enable development of engines with reduced emissions. Dynamic structure Large Eddy Simulation (LES) turbulence model implemented for in-cylinder sprays [1] has shown to predict the flow structure of a spray more accurately than the Reynolds-averaged Navier-Stokes turbulence model.
Journal Article

Large-Eddy Simulation of Turbulent Dispersion Effects in Direct Injection Diesel and Gasoline Sprays

2019-04-02
2019-01-0285
In most large-eddy simulation (LES) applications to two-phase engine flows, the liquid-air interactions need to be accounted for as source terms in the respective governing equations. Accurate calculation of these source terms requires the relative velocity “seen” by liquid droplets as they move across the flow, which generally needs to be estimated using a turbulent dispersion model. Turbulent dispersion modeling in LES is very scarce in the literature. In most studies on engine spray flows, sub-grid scale (SGS) models for the turbulent dispersion still follow the same stochastic approach originally proposed for Reynolds-averaged Navier-Stokes (RANS). In this study, an SGS dispersion model is formulated in which the instantaneous gas velocity is decomposed into a deterministic part and a stochastic part. The deterministic part is reconstructed using the approximate deconvolution method (ADM), in which the large-scale flow can be readily calculated.
Journal Article

Divided Exhaust Period Implementation in a Light-Duty Turbocharged Dual-Fuel RCCI Engine for Improved Fuel Economy and Aftertreatment Thermal Management: A Simulation Study

2018-04-03
2018-01-0256
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented.
Technical Paper

Modeling Ignition and Combustion in Spark-Ignition Engines Based on Swept-Volume Method

2018-04-03
2018-01-0188
A swept-volume method of calculating the volume swept by the flame during each time step is developed and used to improve the calculation of fuel reaction rates. The improved reaction rates have been applied to the ignition model and coupled with the level set G-equation combustion model. In the ignition model, a single initial kernel is formed after which the kernel is convected by the gas flow and its growth rate is determined by the flame speed and thermal expansion due to the energy transfer from the electrical circuit. The predicted ignition kernel size was compared with the available experimental data and good agreements were achieved. Once the ignition kernel reaches a size when the fully turbulent flame is developed, the G-equation model is switched on to track the mean turbulent flame front propagation.
Technical Paper

Numerical Study on Controllability of Natural Gas and Diesel Dual Fuel Combustion in a Heavy-Duty Engine

2017-03-28
2017-01-0756
Natural gas is a promising alternative fuel for internal combustion engines due to its rich reserves and low price, as well as good physical and chemical properties. Its low carbon structure and high octane number are beneficial for CO2 reduction and knock mitigation, respectively. Diesel and natural gas dual fuel combustion is a viable pathway to utilize natural gas in diesel engines. To achieve high efficiency and low emission combustion in a practical diesel engine over a wide range of operating conditions, understanding the performance responses to engine system parameter variations is needed. The controllability of two combustion strategies, diesel pilot ignition (DPI) and single injection reactivity controlled compression ignition (RCCI), were evaluated using the multi-dimension CFD simulation in this paper.
Technical Paper

Evaluation and Validation of Large-Eddy-Simulation (LES) for Gas Jet and Sprays

2017-03-28
2017-01-0844
Large-eddy simulation (LES) is a useful approach for the simulation of turbulent flow and combustion processes in internal combustion engines. This study employs the ANSYS Forte CFD package and explores several key and fundamental components of LES, namely, the subgrid-scale (SGS) turbulence models, the numerical schemes used to discretize the transport equations, and the computational mesh. The SGS turbulence models considered include the classic Smagorinsky model and a dynamic structure model. Two numerical schemes for momentum convection, quasi-second-order upwind (QSOU) and central difference (CD), were evaluated. The effects of different computational mesh sizes controlled by both fixed mesh refinement and a solution-adaptive mesh-refinement approach were studied and compared. The LES models are evaluated and validated against several flow configurations that are critical to engine flows, in particular, to fuel injection processes.
Technical Paper

Uncertainty Quantification of Direct Injection Diesel and Gasoline Spray Simulations

2017-03-28
2017-01-0836
In this paper, large eddy simulation (LES) coupled with two uncertainty quantification (UQ) methods, namely latin-hypercube sampling (LHS) and polynomial chaos expansion (PCE), have been used to quantify the effects of model parameters and spray boundary conditions on diesel and gasoline spray simulations. Evaporating, non-reacting spray data was used to compare penetration, mixture fraction and spray probability contour. Two different sets of four uncertain variables were used for diesel and gasoline sprays, respectively. UQ results showed good agreement between experiments and predictions. UQ statistics indicated that discharge coefficient has stronger impact on gasoline than diesel sprays, and spray cone angle is important for vapor penetration of both types of sprays. Additionally, examination of the gasoline spray characteristics showed that plume-to-plume interaction and nozzle dribble are important phenomena that need to be considered in high-fidelity gasoline spray simulations.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Journal Article

Effects of Numerical Schemes on Large Eddy Simulation of Turbulent Planar Gas Jet and Diesel Spray

2016-04-05
2016-01-0866
Three time integration schemes and four finite volume interpolation schemes for the convection term in momentum equation were tested under turbulent planar gas jet and Sandia non-reacting vaporizing Spray-H cases. The three time integration schemes are the first-order Euler implicit scheme, the second-order backward scheme, and the second-order Crank-Nicolson scheme. The four spatial interpolation schemes are cubic central, linear central, upwind, and vanLeer schemes. Velocity magnitude contour, centerline and radial mean velocity and Reynolds stress profiles for the planar turbulent gas jet case, and fuel vapor contour and liquid and vapor penetrations for the Diesel spray case predicted by the different numerical schemes were compared. The sensitivity of the numerical schemes to mesh resolution was also investigated. The non-viscosity based dynamic structure subgrid model was used. The numerical tool used in this study was OpenFOAM.
Technical Paper

CFD Analysis of the Effects of Fuel Composition and Injection Strategy on Mixture Preparation and Fuel Deposit Formation in a GDI Engine

2015-09-06
2015-24-2408
In spark-ignited direct-injected engines, the formation of fuel pools on the piston is one of the major promoters of unburnt hydrocarbons and soot: in order to comply with the increasingly stringent emission regulations (EU6 and forthcoming), it is therefore necessary to limit fuel deposit formation. The combined use of advanced experimental techniques and detailed 3D-CFD simulations can help to understand the mechanisms driving fuel pool formation. In the paper, a combined experimental and numerical characterization of pool formation in a GDI engine is carried out to investigate and understand the complex interplay of all the mentioned factors. In particular, a low-load low-rpm engine operation is investigated for different ignition phasing, and the impact of both fuel formulation and instantaneous piston temperature variations in the CFD analyses are evaluated.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Load Limit Extension in Pre-Mixed Compression Ignition Using a 2-Zone Combustion System

2015-04-14
2015-01-0860
A novel 2-zone combustion system was examined at medium load operation consistent with loads in the light duty vehicle drive cycle (7.6 bar BMEP and 2600 rev/min). Pressure rise rate and noise can limit the part of the engine map where pre-mixed combustion strategies such as HCCI or RCCI can be used. The present 2-zone pistons have an axial projection that divides the near TDC volume into two regions (inner and outer) joined by a narrow communication channel defined by the squish height. Dividing the near TDC volume provides a means to prepare two fuel-air mixtures with different ignition characteristics. Depending on the fuel injection timing, the reactivity of the inner or outer volume can be raised to provide an ignition source for the fuel-air mixture in the other, less reactive volume. Multi-dimensional CFD modeling was used to design the 2-zone piston geometry examined in this study.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

LES Analysis of Cyclic Variability in a GDI Engine

2014-04-01
2014-01-1148
The paper critically discusses Large-Eddy Simulation (LES) potential to investigate cycle-to-cycle variability (CCV) in internal combustion engines. Particularly, the full load/peak power engine speed operation of a high-performance turbocharged GDI unit, for which ample cycle-to-cycle fluctuations were observed during experimental investigations at the engine test bed, is analyzed through a multi-cycle approach covering 25 subsequent engine cycles. In order to assess the applicability of LES within the research and development industrial practice, a modeling framework with a limited impact on the computational cost of the simulations is set up, with particular reference to the extent of the computational domain, the computational grid size, the choice of boundary conditions and numerical sub-models [1, 2, 3].
Technical Paper

Modeling Investigation of Auto-ignition and Engine Knock by HO2

2014-04-01
2014-01-1221
Knock in a Rotax-914 engine was modeled and investigated using an improved version of the KIVA-3V code with a G-equation combustion model, together with a reduced chemical kinetics model. The ERC-PRF mechanism with 47 species and 132 reactions [1] was adopted to model the end gas auto-ignition in front of the flame front. The model was validated by a Caterpillar SI engine and a Rotax-914 engine in different operating conditions. The simulation results agree well with available experimental results. A new engineering quantified knock criterion based on chemical mechanism was then proposed. Hydroperoxyl radical (HO2) shows obvious accumulation before auto-ignition and a sudden decrease after auto-ignition. These properties are considered to be a good capability for HO2 to investigate engine knock problems.
X