Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
Technical Paper

Development of the Control Logic of Electronically Controlled Hydraulic Brake System for Hybrid Vehicle

2009-04-20
2009-01-1215
The control logic of electronically controlled hydraulic brake system for hybrid vehicle is introduced in this paper. The hybrid brake system consists of the electronically controlled hydraulic brake system, electric motor and vacuum management system. The electronically controlled hydraulic brake system is developed and named as Advanced ESC system. This system has 14 linear valves, a motor, and multi-pumps. These linear valves are tested to find the dynamic characteristics, which is the relation between hydraulic force, magnetic force and spring force. By using this force relation, valve is controlled to be open or closed state. The multi-pumps are adapted to improve NVH and hydraulic pressure rise rates. After the regenerative brake torque of electric motor is studied, the control flow chart of this brake system is determined. During vehicle stop, the regenerative brake torque of electric motor gradually increases and then reaches to max torque to regenerate.
Technical Paper

Development of Mando ESP (Electronic Stability Program)

2003-03-03
2003-01-0101
This paper describes the MANDO MGH ESP (Electronic Stability Program) and consists of the control philosophy, hydraulic actuator and the simulation and test results. The ESP system controls the dynamic vehicle motion in the emergency situation such as the final oversteer and understeer and allows the vehicle to follow the course as desired by the driver. The MANDO MGH ESP is integrated with the existing MANDO MGH ABS/TCS, which is improved with the more information and controls both brake pressure and engine torque for the optimal performance. The look-up tables are emphasized to have the accurate target yaw rate of the vehicle and obtained from vehicle test for the whole operation range of the steering wheel angle and vehicle speed. The wheel slip control is applied for the yaw compensation and the target wheel slip is determined by error between the target yaw rate and actual yaw rate.
X