Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Calculating Vehicle Side Structure Stiffness from Crash Test Data: Effects of Impactor Characteristics

2020-04-14
2020-01-0640
This research examines the effects of impactor characteristics on the calculated structural stiffness parameters A and B for the struck sides of late-model vehicles. This study was made possible by crash testing performed by the National Highway Traffic Safety Administration involving side impacts of the same vehicle line with both a rigid pole and with a moving deformable barrier. Twenty-nine crash test pairs were identified for 2018 model-year vehicles. Of 60 total tests, 49 were analyzed. Test data for 19 vehicles impacted in both modes resulted in A and B values considered to be valid. Classifying these 19 vehicles according to the categories defined by Siddall and Day, only Class 2 multipurpose vehicles were represented by enough vehicles (10) to search for trends within a given vehicle category. For these vehicles, more scatter in the results was observed in both A and B values for the MDB impacts compared to the pole impacts.
Journal Article

Crush Energy and Stiffness in Side Impacts

2017-03-28
2016-32-0090
Crash tests of vehicles by striking deformable barriers are specified by Government programs such as FMVSS 214, FMVSS 301 and the Side Impact New Car Assessment Program (SINCAP). Such tests result in both crash partners absorbing crush energy and moving after separation. Compared with studying fixed rigid barrier crash tests, the analysis of the energy-absorbing behavior of the vehicle side (or rear) structure is much more involved. Described in this paper is a methodology by which analysts can use such crash tests to determine the side structure stiffness characteristics for the specific struck vehicle. Such vehicle-specific information allows the calculation of the crush energy for the particular side-struck vehicle during an actual collision – a key step in the reconstruction of that crash.
Journal Article

Crush Energy and Stiffness in Side Impacts

2017-03-28
2017-01-1415
Crash tests of vehicles by striking deformable barriers are specified by Government programs such as FMVSS 214, FMVSS 301 and the Side Impact New Car Assessment Program (SINCAP). Such tests result in both crash partners absorbing crush energy and moving after separation. Compared with studying fixed rigid barrier crash tests, the analysis of the energy-absorbing behavior of the vehicle side (or rear) structure is much more involved. Described in this paper is a methodology by which analysts can use such crash tests to determine the side structure stiffness characteristics for the specific struck vehicle. Such vehicle-specific information allows the calculation of the crush energy for the particular side-struck vehicle during an actual collision – a key step in the reconstruction of that crash.
Technical Paper

Crush Energy Assessment in Frontal Underride/Override Crashes

2009-04-20
2009-01-0105
Crush energy assessment methods rely on the characterization of a vehicle’s structure, through a comparison with crash tests of a similar vehicle. For frontal impacts, the vast majority of these tests involve a flat rigid barrier. When the reconstructionist is presented with a frontal underride/override crash, however, the structural load pattern and the deformation mode suggest that the comparison with flat barrier tests may not be valid. This has been confirmed by prior studies. With few exceptions, for any given vehicle, there are no crash data in an underride/override mode that are useful for analysis purposes. The purpose of this research was to bridge the gap so that flat barrier data, specific to the vehicle in question, could be applied to underride/override cases. This entailed the development of a measurement protocol, a structural model for such crashes, and a procedure for analyzing the load cell data that exist for many barrier crash tests.
Technical Paper

Fatal and Severe Injuries in Rear Impact; Seat Stiffness in Recent Field Accident Data

2008-04-14
2008-01-0193
A decade ago, James, et.al. published a detailed study of the available NASS data on severe rear impacts, with findings that “… stiffened or rigid seat backs will not substantially mitigate severe and fatal injuries in rear impacts.” No field accident study has since been advanced which refutes this finding. Advocates of rigidized seat backs often point to specific cases of severe rear impacts in which MAIS 4+ injuries are associated with seat back deformation, coupled with arguments supporting stiffer seatback designs. These arguments are generally based upon laboratory experiments with dummies in normal seating positions. Recent field accident data shows that generally, in collisions where the majority of societal harm is created, yielding seats continue to provide benefits, including those associated with whiplash associated disorders (WAD).
Technical Paper

Derivation of Vehicle-to-Vehicle Frontal Crash Pulse Estimates from Barrier Crash Data

2008-04-14
2008-01-0174
The BSAN crash pulse model has been shown to provide useful information for restraint sensing evaluation and for structural force-displacement studies in flat fixed rigid barrier (FFRB) crashes. This paper demonstrates a procedure by which the model may be extended for use with central and offset vehicle to vehicle (VTV) crashes through appropriate combinations of vehicle parameters.
Technical Paper

Roadway Asphalt Damage Force Analysis for Accident Reconstruction

2008-04-14
2008-01-0173
In reconstruction of on-roadway vehicle accidents, tire-road surface friction coefficient, mu (μ), can be estimated using a variety of available data. Common ranges and values for μ are used in calculations forming the foundation for most accident reconstruction techniques. When the roadway surface is gouged or disrupted by vehicle components, accounting of dissipated energy can be successful where supporting force data exists. Roadway gouge forces can vary widely depending upon such factors as road surface construction, surface temperature, and the velocity and geometry of the gouging mechanism. Such dissipated energy can be significant in accounting of total reconstruction energy. This paper presents experiments aimed at quantifying gouge force by controlled pavement gouging tests.
Technical Paper

Pulse Shape and Duration in Frontal Crashes

2007-04-16
2007-01-0724
Understanding of events within the history of a crash, and estimation of the severity of occupant interior collisions depend upon an accurate assessment of crash duration. Since this time duration is not measured independently in most crash test reports, it must usually be inferred from interpretations of acceleration data or from displacement data in high-speed film analysis. The significant physical effects related to the crash pulse are often essential in reconstruction analyses wherein the estimation of occupant interior “second collision” or airbag sensing issues are at issue. A simple relation is presented and examined which allows approximation of the approach phase and separation phase kinematics, including restitution and pulse width. Building upon previous work, this relation allows straightforward interpretation of test data from related publicly available test reports.
Technical Paper

Load Path Considerations for Side Crash Compatibility

2007-04-16
2007-01-1176
Heavier, larger pickups and SUVs are bound to encounter lighter, smaller passenger vehicles in many future accidents. As the fleet has evolved to include more and more SUVs, their frontal structures are often indistinguishable from pickup fronts. Improvements in geometric compatibility features are crucial to further injury prevention progress in side impact. In corner crashes where modern bullet passenger car (PC) bumpers make appropriate geometrical overlap with target PC rocker panels, concentrated loads sometimes disrupt foam and plastic bumper corners, creating aggressive edges. In situations where sliding occurs along the structural interface, these sharp edges may slice through doors, panels and pillars. End treatments for such bumper beams should be designed to reduce this aggressive potential.
Technical Paper

Lateral Structural Deformation in Frontal Impacts

2006-04-03
2006-01-1395
In frontal crashes, lateral deformations can occur as a result of various mechanisms. Unfortunately, the crush energy associated with such deformations cannot be assessed as long as the structural properties are unknown. That has been the situation to date, due to the lack of appropriate crash test data. The present research attempts to address this deficit. A passenger car was crash-tested in a mode designed to induce lateral deformations that are significant compared to longitudinal crush. This was done via a series of three repeated impacts on the same vehicle so as to obtain, in a cost-effective manner, structural characterization data at increasing crash severities. Various cause-and-effect relationships (structural characterization models) were considered with an eye to selecting the one that best predicts the crush energy. Insights obtained from analyzing the behavior of the front structure are presented.
Book

Advances in Side Airbag Systems

2005-01-15
Thanks to years of research and development by vehicle manufacturers, suppliers, legislation, and the entire safety community, the side airbag has become a critical safety device to reduce injury and save lives. This new collection of technical research highlights the progression of these essential safety features, providing a complete and thorough perspective through the analysis of both early patents and recent side airbag system developments. Advances in Side Airbag Systems begins with an introduction by editor Donald E. Struble, chronicling the progress made since the mid-1980s in offering improved side impact protection to the motoring public. Authored by leading experts in their respective fields, this book features a comprehensive collection of 26 landmark technical papers. Its scope includes not only thorax airbags, but other inflatable devices designed for side impacts and rollovers.
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

Side Impact Structural Characterization from FMVSS 214D Test Data

2001-03-05
2001-01-0122
Due to the upgrade of FMVSS 214 and the emergence of side NCAP tests, there is a growing body of crash test data on vehicle side structures. Such data would be very useful to reconstructionists, except that the struck vehicle behavior is masked, in part, by the use of a deformable moving barrier in the test. The post-impact dynamics and the energy absorption by the barrier itself must be accounted for if the desired vehicle structural characterization is to be extracted. Attempts prior to this paper to achieve a side structure characterization have dealt with these issues by invoking various simplifying assumptions. Unfortunately, these have not been supported by a foundation in either physics or measurement. Questions have also been raised whether prior characterizations of the barrier face are appropriate, in view of the prior crash modes being so unlike the FMVSS 214 test. To address these issues, crash tests of the barrier itself, in an appropriate crash mode, have been conducted.
Technical Paper

Crush Energy and Structural Characterization

1999-03-01
1999-01-0099
A key aspect of accident reconstruction is the calculation of how much kinetic energy is dissipated as crush. By far the most widely used methods are derivatives of Campbell’s work, in which a linear relationship between residual crush and closing speed is shown to imply an underlying linearity between force and crush. “Consant-stiffness model” is the term used for such a representation of structural behavior. Difficulties arise, however, when significant non-uniformities are present in the crush pattern (as in narrow-object and/or side impacts, for example). The term “residual crush” becomes more ambiguous. Do we mean maximum crush, area-weighted average crush, or some other measure of residual deformation? And is it sufficient to represent the non-uniform crush pattern by a single parameter? Such considerations led to a re-development of the fundamental structural models, with an eye to determining whether the classical constant-stiffness model is the most appropriate.
Technical Paper

Estimating Vehicle Deformation Energy for Vehicles Struck in the Side

1998-02-23
980215
The reconstruction of accidental impacts to the side structure of one or more accident vehicles often incorporates estimates of the energy absorbed by laterally struck vehicle(s). Such estimates generally involve considerably more issues than does the assessment of frontal or rear impact deformation energy. The sides of vehicles are, compared to the usual striking object, relatively broad, and they contain zones of varying stiffness supported by collapsible box structures. Side stiffnesses can vary widely, depending upon impact geometry. Most side impact crash tests that can readily be used to make estimates of side stiffness have been conducted by the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

An Improved Integrated Simulation Model for Side Impact Countermeasure Design

1992-02-01
920355
It is well known that occupant protection in side impacts involves technical complexities, and the development of effective countermeasures has become more urgent due to recent US Government rulemaking. The additional difficulties of experimental measurement and observation have caused an increased emphasis to be placed on simulation models for side impacts. There are several complex three-dimensional occupant models which provide representations of occupant kinetics, but simulations of the occupant's interaction with the vehicle are not well developed. In contrast, the simpler lumped-mass models are good at simulating vehicle structural dynamics, including door intrusion, but may not model the occupant well (head movements, for example). The present simulation is a lumped-mass model that seeks a middle ground.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Force/Deflection and Fracture Characteristics of the Temporo-parietal Region of the Human Head

1991-10-01
912907
Impact tests were conducted on thirty-one unembalmed human cadaver heads. Impacts were delivered to the temporo-parietal region of fixed cadavers by two, different sized, flat-rigid impactors. Yield fracture force and stiffness data for this region of the head are presented. Impactor surfaces consisted of a 5 cm2 circular plate and a 52 cm2 rectangular plate. The average stiffness value observed using the circular impactor was 1800 N/mm, with an average bone-fracture-force level of 5000 N. Skull stiffness for the rectangular impactor was 4200 N/mm, and the average fracture-force level was 12,500 N.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
X