Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Energy Management Strategy for Plug-in Hybrid Vehicles Based on Model Predictive Control and Local Encryption Dynamic Programming

2024-04-09
2024-01-2781
A model predictive control (MPC) energy management strategy (EMS) coupled with offline dynamic programming (ODP) based on historical average vehicle speed, ODP-MPC, is proposed in this paper. The effectiveness of ODP-MPC is verified using historical traffic flow datasets from the open literature. The simulation results show that ODP-MPC can reduce fuel consumption by 1.1% to 7.3% compared to MPC. Moreover, at the prediction area Hp=3(3s), the fuel consumption of ODP-MPC is only 2.1% higher than that of the DP algorithm. This indicates that ODP-MPC can approximate the theoretical fuel economy. As for the computational effort, the online computation time of ODP-MPC is improved by 6.3%~22.9% compared to MPC, but still less than the 1s time step. Reducing the number of grid cells (m) or increasing the distance step (distf) in offline DP reduces the offline computational cost and the fuel economy of ODP-MPC.
Technical Paper

Assessing and Characterizing the Effect of Altitude on Fuel Economy, Particle Number and Gaseous Emissions Performance of Gasoline Vehicles under Real Driving

2023-04-11
2023-01-0381
High altitudes have a significant effect on the real driving emissions (RDE) of vehicles due to lower pressure and insufficient oxygen concentration. In addition, type approval tests for light-duty vehicles are usually conducted at altitudes below 1000 m. In order to investigate the influence of high altitude on vehicles fuel economy and emissions, RDE tests procedure had been introduced in the China VI emission regulations. In this study, the effect of altitude on fuel economy and real road emissions of three light-duty gasoline vehicles was investigated. The results indicated that for vehicles fuel economy, fuel consumption (L/100 km) for the tested vehicles decreased while the mean exhaust temperature increased with an increase in altitudes. Compared to near sea level, the fuel consumption (L/100 km) of the tested vehicle was reduced by up to 23.28%.
Technical Paper

Injury Severity Prediction Algorithm Based on Select Vehicle Category for Advanced Automatic Collision Notification

2022-03-29
2022-01-0834
With the evolution of telemetry technology in vehicles, Advanced Automatic Collision Notification (AACN), which detects occupants at risk of serious injury in the event of a crash and triages them to the trauma center quickly, may greatly improve their treatment. An Injury Severity Prediction (ISP) algorithm for AACN was developed using a logistic regression model to predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. National Automotive Sampling System Crashworthiness Data System (NASS-CDS: 1999-2015) and model year 2000 or later were filtered for new case selection criteria, based on vehicle body type, to match Subaru vehicle category. This new proposed algorithm uses crash direction, change in velocity, multiple impacts, seat belt use, vehicle type, presence of any older occupant, and presence of any female occupant.
Technical Paper

Design and Optimization of an SUV Engine Compartment Bottom Shield Based on Kriging Interpolation and Multi-Island Genetic Algorithm

2022-03-29
2022-01-0172
Engine compartment thermal management can achieve energy saving and emission reduction. The structural design of the components in the engine compartment affects the thermal fluid flow performance, which in turn affects the thermal management performance. In this paper, based on the phenomenon that the surface of the parts in the engine compartment is abnormally high due to design defects of an SUV engine compartment bottom shield, the engine compartment is modeled and analyzed by CFD using the software STAR-CCM+. It is not conducive to the heat dissipation, so the bottom shield needs to be redesigned. To redesign the shape of the bottom shield, four dimensions and one coordinate value were selected as the design parameters, and the oil pan maximum surface temperature was selected as the optimization target. The Latin hypercube sampling method was used to sample the space uniformly, and the experimental design plan was constructed and simulated.
Technical Paper

Numerical and Experimental Studies of a Novel Dimpled Stepped-Lip Piston Design on Turbulent Flow Development in a Medium-Duty Diesel Engine

2022-03-29
2022-01-0400
Spray-wall interactions in diesel engines have a strong influence on turbulent flow evolution and mixing, which influences the engine’s thermal efficiency and pollutant-emissions behavior. Previous optical experiments and numerical investigations of a stepped-lip diesel piston bowl focused on how spray-wall interactions influence the formation of squish-region vortices and their sensitivity to injection timing. Such vortices are stronger and longer-lived at retarded injection timings and are correlated with faster late-cycle heat release and soot reductions, but are weaker and shorter-lived as injection timing is advanced. Computational fluid dynamics (CFD) simulations predict that piston bowls with more space in the squish region can enhance the strength of these vortices at near-TDC injection timings, which is hypothesized to further improve peak thermal efficiency and reduce emissions. The dimpled stepped-lip (DSL) piston is such a design.
Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Technical Paper

Non-Equilibrium Law-of-the-Wall Modeling for Improved Heat Transfer Predictions: Model Development and Validation

2022-03-29
2022-01-0405
A one-dimensional, non-equilibrium, compressible law of the wall model is proposed to increase the accuracy of heat transfer predictions from computational fluid dynamics (CFD) simulations of internal combustion engine flows on engineering grids. Our 1D model solves the transient turbulent Navier-Stokes equations for mass, momentum, energy and turbulence under the thin-layer assumption, using a finite-difference spatial scheme and a high-order implicit time integration method. A new algebraic eddy-viscosity closure, derived from the Han-Reitz equilibrium law of the wall, with enhanced Prandtl number sensitivity and compressibility effects, was developed for optimal performance. Several eddy viscosity sub-models were tested for turbulence closure, including the two-equation k-epsilon and k-omega, which gave insufficient performance.
Technical Paper

Simulation of the Internal Flow and Cavitation of Hydrous Ethanol-Gasoline Fuels in a Multi-Hole Direct Injector

2022-03-29
2022-01-0501
Hydrous ethanol not only has the advantages of high-octane number and valuable oxygen content, but also reduce the energy consumption in the production process. However, little literature investigated the internal flow and cavitation of hydrous ethanol-gasoline fuels in the multi-hole direct injector. In this simulation, a two-phase fuel flow model in injector is established based on the multi-fluid model of Euler-Euler method, and the accuracy of model is verified. On the basis of this model, the flow of different hydrous ethanol-gasoline blends is calculated under different injection conditions, and the cavitation, flow rate, and velocity at the outlet of the nozzle are predicted. Meanwhile, the influence of temperature and back pressure on the flow is also analyzed. The results show that the use of hydrous ethanol reduces the flow rate, compared with the velocity of E0, that of E10w, E20w, E50w, E85w, and E100w decreases by 10%, 12.9%, 17.6%, 20%, and 23.5%, respectively.
Technical Paper

Numerical Analysis of Flame Temperature and Intermediate Product Concentration in Micro-Scale Coaxial Diffusion Combustion of Methanol

2022-03-29
2022-01-0699
As an excellent nanoscale material, carbon nanotubes (CNTs) play a very important role in improving the batteries of new energy vehicles. The micro-scale combustion flame synthesis method is a promising method for preparing carbon nanotubes. To explore the optimal growth condition of carbon nanotubes under micro-scale combustion, the detailed mechanism of methanol C3 (114 species, 1999 reactions) was reduced based on whole-species sensitivity analysis, then a suitable model of methanol combustion was established by using Fluent software coupling with simplified mechanism (16 species, 65 reactions) of methanol. The model was used for the numerical simulation of micro-scale coaxial diffusion combustion of methanol, and then it was verified by the experimental results of micro-scale combustion of methanol.
Technical Paper

Lubricant-Oil-Induced Pre-ignition Phenomena in Modern Gasoline Engines: Using Experimental Data and Numerical Chemistry to Develop a Practical Correlation

2021-09-05
2021-24-0052
Recent research on thermal reciprocating engines has focused on the influence of lubricant oil on the combustion process, which can lead to highly undesired super-knock events. Low-Speed Pre-Ignition (LSPI) events severely limit the further development of Direct Injection Spark Ignition Engines (DISI), preventing high efficiencies from being achieved. However, there is still a lack of knowledge about the fundamental mechanisms leading to LSPI, due to the complex phenomena involved and the interaction between lubricant oil and fuel. Understanding how the presence of lubricant oil traces affects gasoline chemical reactivity is an essential step for performing successful numerical simulations aimed at predicting the onset of LSPI phenomena. Reaction mechanisms able to predict oil-fuel interaction have been proposed, but they are computationally demanding.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Journal Article

An Investigation of Real-Gas and Multiphase Effects on Multicomponent Diesel Sprays

2020-04-14
2020-01-0240
Lagrangian spray modeling represents a critical boundary condition for multidimensional simulations of in-cylinder flow structure, mixture formation and combustion in internal combustion engines. Segregated models for injection, breakup, collision and vaporization are usually employed to pass appropriate momentum, mass, and energy source terms to the gas-phase solver. Careful calibration of each sub-model generally produces appropriate results. Yet, the predictiveness of this modeling approach has been questioned by recent experimental observations, which showed that at trans- and super-critical conditions relevant to diesel injection, classical atomization and vaporization behavior is replaced by a mixing-controlled phase transition process of a dense fluid. In this work, we assessed the shortcomings of classical spray modeling with respect to real-gas and phase-change behavior, employing a multicomponent phase equilibrium solver and liquid-jet theory.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

2019-12-19
2019-01-2184
OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Simulation Investigation of Working Process and Emissions on GDI Engine Fueled with Hydrous Ethanol Gasoline Blends

2019-04-02
2019-01-0219
Compared with ordinary gasoline, using ethanol gasoline blends as fuel of Internal Combustion Engine is beneficial for the performance of power, economy and emission of engine. However, the fuel ethanol blended in ethanol gasoline blends currently is usually anhydrous ethanol, which requires dewatering implementer in production process, and the cost is high. Therefore, the production cost can be significantly reduced by replacement of anhydrous ethanol with hydrous ethanol while exerting the advantage of ethanol gasoline blends. In this study, computation fluid dynamics (CFD) software CONVERGE is employed to establish a simulation model of an actual gasoline direct injection (GDI) engine, and investigate the effect of burning hydrous ethanol gasoline blends and different injection strategy on combustion process and emission, and the validity of the model was validated by experiments.
X