Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of closed-loop combustion phase optimization for varying fuel compensation and cylinder balancing in a HD SI-ICE

2024-04-09
2024-01-2837
Alternative fuels, such as natural and bio-gas, are attractive options for reducing greenhouse gas emissions from combustion engines. However, the naturally occurring variation in gas composition poses a challenge and may significantly impact engine performance. The gas composition affects fundamental fuel properties such as flame propagation speed and heat release rate. Deviations from the gas composition for which the engine was calibrated result in changes in the combustion phase, reducing engine efficiency and increasing fuel consumption and emissions. However, the efficiency loss can be limited by estimating the combustion phase and adapting the spark timing, which could be implemented favorably using a closed-loop control approach. In this paper, we evaluate the efficiency loss resulting from varying gas compositions and the benefits of using a closed-loop controller to adapt the spark timing to retain the nominal combustion phase.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Technical Paper

A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge

2021-04-06
2021-01-0523
Pre-chamber combustion (PCC) engines allow extending the lean limit of operation compared to common SI engines, thus being a candidate concept for the future clean transportation targets. To understand the fundamental mechanisms of the main chamber charge ignition in PCC engines, the effects of the composition in the pre-chamber were investigated numerically. A well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. An open-cycle simulation was run with initialization at exhaust valve opening (EVO). For posterior simulations, the initial flow field was attained by mapping the field variables obtained from the full cycle simulation. The entire simulation domain (pre-chamber and main chamber) global excess air ratio (λ) was set to 1.3.
Technical Paper

Optical Diagnostics of Pre-Chamber Combustion with Flat and Bowl-In Piston Combustion Chamber

2021-04-06
2021-01-0528
Pre-chamber Combustion (PCC) extends the lean operation limit operation of spark ignition (SI) engines, thus it has been of interest for researchers as a pathway for increased efficiency and reduced emissions. Optical diagnostic techniques are essential to understand the combustion process, but the engine components such as the piston geometry, are often different from real engines to maximize the optical access. In this study, ignition and subsequent main chamber combustion are compared in an optically accessible PCC engine equipped with a “flat” and a real engine-like “bowl” piston geometry. An active fueled narrow throat pre-chamber was used as the ignition source of the charge in the main-chamber, and both chambers were fueled with methane. Three pre-chamber fuel effective mean pressure (FuelMEP) ratios (PCFR) namely 6%, 9% and 11% of the total amount of fuel were tested at two global excess air ratios (λ) at values of 1.8 and 2.0.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Journal Article

Effect of Intake Temperature and Engine Speed on the Auto-Ignition Reactivity of the Fuels for HCCI Fuel Rating

2021-04-06
2021-01-0510
The current research octane number (RON) and motor octane number (MON) gasoline tests are inadequate for describing the auto-ignition reactivity of fuels in homogeneous charge compression ignition (HCCI) combustion. Intake temperature and engine speed are two important parameters when trying to understand the fuel auto-ignition reactivity in HCCI combustion. The objective of this study was to understand the effect of high intake temperature (between 100 and 200 °C) and engine speed (600 and 900 rpm) on the auto-ignition HCCI reactivity ratings of fuels using an instrumented Cooperative Fuel Research (CFR) engine. The fuels used for this study included blends of iso-octane/n-heptane, toluene/n-heptane, ethanol/n-heptane, and gasolines with varying chemical compositions and octane levels. The CFR engine was operated at 600 and 900 rpm with an intake pressure of 1.0 bar and an excess air ratio (lambda) of 3.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

Narrow-Throat Pre-Chamber Combustion with Ethanol, a Comparison with Methane

2020-09-15
2020-01-2041
With increasingly stringent emissions regulations, the use of pre-chamber combustion systems is gaining popularity in Internal Combustion Engines (ICE). The advantages of pre-chambers are well established, such as improving fuel economy by increasing the lean limit and reducing emissions, particularly NOX. In pre-chamber combustion, flame jets shoot out from the pre-chamber orifices into the main chamber, generating several ignition points that promote a rapid burn rate of the lean mixture (excess-air ratio (λ) >1) in the main chamber. This work studies the effects of using two different fuels in the main chamber and assesses the lean limit, the combustion efficiency (ηc), and the emissions of a single-cylinder heavy-duty engine equipped with a narrow-throat active pre-chamber. Ethanol (C2H5OH) was tested in the main chamber while keeping the pre-chamber fueled with methane (CH4), and the results were then compared to using methane as the sole fuel.
Technical Paper

A Study on the Performance and Emissions of HCCI Oxy-Fuel Combustion in a CFR Engine with Recirculated Carbon Dioxide

2020-09-15
2020-01-2065
Stringent emission regulations and the anticipated climate change call for a paradigm shift in the design of the conventional internal combustion engines. One way to combat this problem is oxy-fuel combustion in which the combustion products are mainly water vapor and carbon dioxide. Water vapor can be easily separated by condensation and carbon dioxide is then easily captured and stored. However, many technical challenges are associated with this mode of combustion. There are many challenges facing oxy-fuel combustion before it find its way to commercial production especially for internal combustion engines. One such challenge is the relatively high temperature of the oxy-fuel combustion. A solution to this problem is the recirculation of the generated CO2 to moderate the in-cylinder temperature. Therefore, careful study of the effect of recirculating the CO2 back to combustion chamber is needed before the implementation of such a concept.
Technical Paper

Multi-Cylinder Adaptation of In-Cycle Predictive Combustion Models

2020-09-15
2020-01-2087
Adaptation of predictive combustion models for their use in in-cycle closed-loop combustion control of a multi-cylinder engine is studied in this article. Closed-loop combustion control can adjust the operation of the engine closer to the optimal point despite production tolerances, component variations, normal disturbances, ageing or fuel type. In the fastest loop, in-cycle closed-loop combustion control was proved to reduce normal variations around the operational point to increase the efficiency. However, these algorithms require highly accurate predictive models, whilst having low complexity for their implementation. Three models were used to exemplify the proposed adaptation methods: the pilot injection’s ignition delay, the pilot burned mass, and the main injection’s ignition delay. Different approaches for the adaptation of the models are studied to obtain the demanded accuracy under the implementation constraints.
X