Refine Your Search

Topic

Search Results

Technical Paper

Inverse Modeling: Theory and Engineering Examples

2016-04-05
2016-01-0267
Over the last two decades inverse problems have become increasingly popular due to their widespread applications. This popularity continuously demands designers to find alternative methods, to solve the inverse problems, which are efficient and accurate. It is important to use effective techniques that are both accurate and computationally efficient. This paper presents a method for solving inverse problems through Artificial Neural Network (ANN) theory. The paper also presents a method to apply Grey Wolf optimizer (GWO) algorithm to inverse problems. GWO is a recent optimization method producing superior results. Both methods are then compared to traditional methods such as Particle Swarm Optimization (PSO) and Markov Chain Monte Carlo (MCMC). Four typical engineering design problems are used to compare the four methods. The results show that the GWO outperforms other methods both in terms of efficiency and accuracy.
Technical Paper

Combined Approximation for Efficient Reliability Analysis of Linear Dynamic Systems

2015-04-14
2015-01-0424
The Combined Approximation (CA) method is an efficient reanalysis method that aims at reducing the cost of optimization problems. The CA uses results of a single exact analysis, and it is suitable for different types of structures and design variables. The second author utilized CA to calculate the frequency response function of a system at a frequency of interest by using the results at a frequency in the vicinity of that frequency. He showed that the CA yields accurate results for small frequency perturbations. This work demonstrates a methodology that utilizes CA to reduce the cost of Monte Carlo simulation (MCs) of linear systems under random dynamic loads. The main idea is to divide the power spectral density function (PSD) of the input load into several frequency bins before calculating the load realizations.
Technical Paper

Multi-Level Decoupled Optimization of Wind Turbine Structures

2015-04-14
2015-01-0434
This paper proposes a multi-level decoupled method for optimizing the structural design of a wind turbine blade. The proposed method reduces the design space by employing a two-level optimization process. At the high-level, the structural properties of each section are approximated by an exponential function of the distance of that section from the blade root. High-level design variables are the coefficients of this approximating function. Target values for the structural properties of the blade are determined at that level. At the low-level, sections are divided into small decoupled groups. For each section, the low-level optimizer finds the thickness of laminate layers with a minimum mass, whose structural properties meet the targets determined by the high-level optimizer. In the proposed method, each low-level optimizer only considers a small number of design variables for a particular section, while traditional, single-level methods consider all design variables simultaneously.
Journal Article

Probability of Failure of Dynamic Systems by Importance Sampling

2013-04-08
2013-01-0607
Estimation of the probability of failure of mechanical systems under random loads is computationally expensive, especially for very reliable systems with low probabilities of failure. Importance Sampling can be an efficient tool for static problems if a proper sampling distribution is selected. This paper presents a methodology to apply Importance Sampling to dynamic systems in which both the load and response are stochastic processes. The method is applicable to problems for which the input loads are stationary and Gaussian and are represented by power spectral density functions. Shinozuka's method is used to generate random time histories of excitation. The method is demonstrated on a linear quarter car model. This approach is more efficient than standard Monte Carlo simulation by several orders of magnitude.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Journal Article

Efficient Probabilistic Reanalysis and Optimization of a Discrete Event System

2011-04-12
2011-01-1081
This paper presents a methodology to evaluate and optimize discrete event systems, such as an assembly line or a call center. First, the methodology estimates the performance of a system for a single probability distribution of the inputs. Probabilistic Reanalysis (PRRA) uses this information to evaluate the effect of changes in the system configuration on its performance. PRRA is integrated with a program to optimize the system. The proposed methodology is dramatically more efficient than one requiring a new Monte Carlo simulation each time we change the system. We demonstrate the approach on a drilling center and an electronic parts factory.
Journal Article

A Re-Analysis Methodology for System RBDO Using a Trust Region Approach with Local Metamodels

2010-04-12
2010-01-0645
A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent the correlation. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is based on importance sampling. It provides accurate results, if the support of the sampling PDF contains the support of the joint PDF of the input random variables. The sequential, trust-region optimization approach satisfies this requirement.
Journal Article

Piston Design Using Multi-Objective Reliability-Based Design Optimization

2010-04-12
2010-01-0907
Piston design is a challenging engineering problem which involves complex physics and requires satisfying multiple performance objectives. Uncertainty in piston operating conditions and variability in piston design variables are inevitable and must be accounted for. The piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. In this paper, an analytical piston model is used in a deterministic and probabilistic (reliability-based) multi-objective design optimization process to obtain an optimal piston design. The model predicts piston performance in terms of scuffing, friction and noise, In order to keep the computational cost low, efficient and accurate metamodels of the piston performance metrics are used. The Pareto set of all optimal solutions is calculated allowing the designer to choose the “best” solution according to trade-offs among the multiple objectives.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Technical Paper

Imprecise Reliability Assessment When the Type of the Probability Distribution of the Random Variables is Unknown

2009-04-20
2009-01-0199
In reliability design, often, there is scarce data for constructing probabilistic models. It is particularly challenging to model uncertainty in variables when the type of their probability distribution is unknown. Moreover, it is expensive to estimate the upper and lower bounds of the reliability of a system involving such variables. A method for modeling uncertainty by using Polynomial Chaos Expansion is presented. The method requires specifying bounds for statistical summaries such as the first four moments and credible intervals. A constrained optimization problem, in which decision variables are the coefficients of the Polynomial Chaos Expansion approximation, is formulated and solved in order to estimate the minimum and maximum values of a system’s reliability. This problem is solved efficiently by employing a probabilistic re-analysis approach to approximate the system reliability as a function of the moments of the random variables.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach

2008-04-14
2008-01-0377
Early in the engineering design cycle, it is difficult to quantify product reliability due to insufficient data or information to model uncertainties. Probability theory can not be therefore, used. Design decisions are usually based on fuzzy information which is imprecise and incomplete. Various design methods such as Possibility-Based Design Optimization (PBDO) and Evidence-Based Design Optimization (EBDO) have been developed to systematically treat design with non-probabilistic uncertainties. In practical engineering applications, information regarding the uncertain variables and parameters may exist in the form of sample points, and uncertainties with sufficient and insufficient information may exist simultaneously. Most of the existing optimal design methods under uncertainty can not handle this form of incomplete information. They have to either discard some valuable information or postulate the existence of additional information.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Journal Article

Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer

2008-04-14
2008-01-1217
The cathode gas diffusion layer (GDL) is an important component of polymer electrolyte membrane (PEM) fuel cell. Its design parameters, including thickness, porosity and permeability, significantly affect the reactant transport and water management, thus impacting the fuel cell performance. This paper presents an optimization study of the GDL design parameters with the objective of maximizing the current density under a given voltage. A two-dimensional single-phase PEM fuel cell model is used. A multivariable optimization problem is formed to maximize the current density at the cathode under a given electrode voltage with respect to the GDL parameters. In order to reduce the computational effort and find the global optimum among the potential multiple optima, a global metamodel of the actual CFD-based fuel cell simulation, is adaptively generated using radial basis function approximations.
Technical Paper

Optimal Engine Torque Management for Reducing Driveline Clunk Using Time - Dependent Metamodels

2007-05-15
2007-01-2236
Quality and performance are two important customer requirements in vehicle design. Driveline clunk negatively affects the perceived quality and must be therefore, minimized. This is usually achieved using engine torque management, which is part of engine calibration. During a tip-in event, the engine torque rate of rise is limited until all the driveline lash is taken up. However, the engine torque rise, and its rate can negatively affect the vehicle throttle response. Therefore, the engine torque management must be balanced against throttle response. In practice, the engine torque rate of rise is calibrated manually. This paper describes a methodology for calibrating the engine torque in order to minimize the clunk disturbance, while still meeting throttle response constraints. A set of predetermined engine torque profiles are calibrated in a vehicle and the transmission turbine speed is measured for each profile. The latter is used to quantify the clunk disturbance.
Technical Paper

An Efficient Re-Analysis Methodology for Vibration of Large-Scale Structures

2007-05-15
2007-01-2326
Finite element analysis is a well-established methodology in structural dynamics. However, optimization and/or probabilistic studies can be prohibitively expensive because they require repeated FE analyses of large models. Various reanalysis methods have been proposed in order to calculate efficiently the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. The parametric reduced-order modeling (PROM) and the combined approximation (CA) methods are two re-analysis methods, which can handle large model parameter changes in a relatively efficient manner. Although both methods are promising by themselves, they can not handle large FE models with large numbers of DOF (e.g. 100,000) with a large number of design parameters (e.g. 50), which are common in practice. In this paper, the advantages and disadvantages of the PROM and CA methods are first discussed in detail.
Technical Paper

A Time-Dependent Reliability Analysis Method using a Niching Genetic Algorithm

2007-04-16
2007-01-0548
A reliability analysis method is presented for time-dependent systems under uncertainty. A level-crossing problem is considered where the system fails if its maximum response exceeds a specified threshold. The proposed method uses a double-loop optimization algorithm. The inner loop calculates the maximum response in time for a given set of random variables, and transforms a time-dependent problem into a time-independent one. A time integration method is used to calculate the response at discrete times. For each sample function of the response random process, the maximum response is found using a global-local search method consisting of a genetic algorithm (GA), and a gradient-based optimizer. This dynamic response usually exhibits multiple peaks and crosses the allowable response level to form a set of complex limit states, which lead to multiple most probable points (MPPs).
Technical Paper

System Reliability-Based Design using a Single-Loop Method

2007-04-16
2007-01-0555
An efficient approach for series system reliability-based design optimization (RBDO) is presented. The key idea is to apportion optimally the system reliability among the failure modes by considering the target values of the failure probabilities of the modes as design variables. Critical failure modes that contribute the most to the overall system reliability are identified. This paper proposes a computationally efficient, system RBDO approach using a single-loop method where the searches for the optimum design and for the most probable failure points proceed simultaneously. Specifically, at each iteration the optimizer uses approximated most probable failure points from the previous iteration to search for the optimum. A second-order Ditlevsen upper bound is used for the joint failure probability of failure modes. Also, an easy to implement active strategy set is employed to improve algorithmic stability.
Technical Paper

An Efficient Possibility-Based Design Optimization Method for a Combination of Interval and Random Variables

2007-04-16
2007-01-0553
Reliability-based design optimization accounts for variation. However, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. A crank-slider mechanism example demonstrates the accuracy and efficiency of the proposed sequential algorithm.
Technical Paper

Reliability Based Design Optimization of Dynamic Vehicle Performance Using Bond Graphs and Time Dependent Metamodels

2006-04-03
2006-01-0109
A vehicle drivetrain is designed to meet specific vehicle performance criteria which usually involve trade-offs among conflicting performance measures. This paper describes a methodology to optimize the drivetrain design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A complete vehicle dynamic model is developed using the bond graph method. The model includes the vehicle, engine, transmission, torque converter, driveline, and transmission controller. An equivalent MATLAB Simulink model performs the nonlinear dynamic analysis. In order to reduce the computational effort, a time-dependent metamodel is developed based on principal component analysis using singular value decomposition. The optimization is performed using both the Simulink vehicle dynamic model and the metamodel. A deterministic optimization first determines the optimum design in terms of fuel economy, without considering variations or uncertainties.
X