Refine Your Search

Author

Search Results

Technical Paper

Visualization of Combustion and Flow Phenomena in a Methane-Fueled Passive Pre-Chamber Ignited Gas Engine

2023-09-29
2023-32-0057
This study aims to investigate the combustion and flow phenomena in a stoichiometrically operated methane-fueled passive pre-chamber ignited gas engine. The combustion phenomena are visualized with a high-speed camera and the chemical properties are resolved by Large Eddy Simulation (LES) turbulent model with the SAGE combustion approach. Results reveal that a highly compressed unburnt gas of intermediate fuel species emerges from the pre-chamber before the flame ejection due to the high-pressure difference which promptly consumes the main chamber charge and accelerates combustion. Moreover, the nozzle diameter and spark plug orientation significantly affect the flame propagation as well as the overall engine performance.
Technical Paper

PREMIER Combustion of Natural Gas Ignited with Diesel Fuel in a Dual Fuel Engine -Effects of EGR and Supercharging on End-gas Auto Ignition and Thermal Efficiency

2023-09-29
2023-32-0016
To control the auto ignition in end-gas region and to achieve higher thermal efficiency in a natural gas dual fuel engine operated under PREMIER combustion mode where the end-gas auto ignition occurs without knocking-like oscillation, the EGR (exhaust gas recirculation) and supercharging were applied. The EGR rate and the intake air pressure as well as the pilot injection timing of diesel fuel were varied, and the profiles of the in-cylinder pressure, the exhaust emissions and the heat balance were examined at the indicated mean effective pressure around 680 kPa. The experimental results showed that higher thermal efficiency can be achieved with the combination of the PREMIER combustion and the EGR rate of 30% due to the improvements in the combustion efficiency and the degree of constant volume heat release while reducing the cooling loss.
Technical Paper

Plasma Temperature of Spark Discharge in a Lean-burn Spark-ignition Engine Using a Time Series of Spectra Measurements

2019-12-19
2019-01-2158
In this research, a spark plug with an optical fiber has been developed to obtain the emission spectra from the spark discharge and flame kernel. This developed spark plug with an optical fiber can obtain the time series of emission spectra from the spark discharge and Initial flame kernel in the real spark-ignition engine using EMCCD spectrometer. The plasma vibrational temperature of the spark discharge can be measured using the emission spectra from the electrically excited CN violet band system. The plasma of the spark discharge and gas rotational temperature of the initial flame kernel can be also measured using emission spectra from OH* radicals (P and R branches). The plasma temperature of the spark discharge was almost 8,000 K and the gas temperature of the Initial flame kernel approached that of the adiabatic flame temperature.
Technical Paper

An Analysis on Cycle-by-cycle Variation and Trace-knock using a Turbulent Combustion Model Considering a Flame Propagation Mechanism

2019-12-19
2019-01-2207
Gasoline engines have the trace-knock phenomena induced by the fast combustion which happens a few times during 100 cycles. And that constrains the thermal efficiency improvement due to limiting the ignition timing advance. So the authors have been dedicating a trace-knock simulation so that we could obtain any pieces of information associated with trace-knock characteristics. This simulation consists of a turbulent combustion model, a cycle-by-cycle variation model and a chemical calculation subprogram. In the combustion model, a combustion zone is considered in order to obtain proper turbulent combustion speed through wide range of engine speed. From a cycle-by-cycle variation analysis of an actual gasoline engine, some trace-knock features were detected, and they were involved in the cycle-by-cycle variation model. And a reduced elementary reaction model of gasoline PRF (primary reference fuel) was customized to the knocking prediction, and it was used in the chemical calculation.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

2017-09-04
2017-24-0027
A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. We have confirmed the statements of other authors that HO2+OH=H2O+O2, H2O2+M=OH+OH+M and H2O2+H=H2+HO2 reactions showed very high sensitivity during high-pressure ignition delay times and had considerable uncertainty.
Technical Paper

Combustion Diagnostics Using Time-Series Analysis of Radical Emissions in a Practical Engine

2015-11-17
2015-32-0748
The objective of this study is to investigate the initial flame propagation characteristics of turbulent flame in an engine cylinder through time-series analysis of radical emissions. A spark plug with optical fiber was developed in this study. The plug sensor is M12 type that makes it possible to mount in practical engine. The spark plug sensor can detect radical emissions in time-resolved spectra through time-series spectroscopic measurement. In this spectra, some kinds of radical emissions such as OH*(306nm), CH*(431nm) and C2*(517nm) based on principle of chemiluminescence are observed. In this study, the spark plug sensor was applied to both compression-expansion machine (CEM) and practical engine. As a result of CEM with bottom viewed high-speed camera, three kinds of spectra could be detected.
Technical Paper

Effect of Bio-Gas Contents on SI Combustion for a Co-Generation Engine

2015-09-01
2015-01-1946
Bio-gas as an internal combustion (I.C.) engine fuel has many advantages such as cheaper fuel cost, low emission levels and especially the neutral recirculation loop of carbon dioxide, which is one of the principal factors in global warming. In this study, positive potentialities of bio-gas were investigated using a micro co-generation engine. The mixing ratio of methane (CH4) and carbon dioxide (CO2) was changed to simulate various types of bio-gases. Intake air and fuel flow rates were controlled to change the equivalence ratio. The engine load condition could be changed with the electric output power used. Base on the result, the higher CO2 content rate slowed down the engine speed in the same load condition and the combustion speed generally decreased under the same load condition with maintaining the engine speed. However thermal efficiency increased with lean burn conditions and NOX emission decreased with higher CO2 mixing rates.
Technical Paper

Effect of Hydrogen Concentration on Engine Performance, Exhaust Emissions and Operation Range of PREMIER Combustion in a Dual Fuel Gas Engine Using Methane-Hydrogen Mixtures

2015-09-01
2015-01-1792
A single cylinder, supercharged dual fuel gas engine with micro-pilot fuel injection is operated using methane only and methane-hydrogen mixtures. Methane only experiments were performed at various equivalence ratios and equivalence ratio of 0.56 is decided as the optimum operating condition based on engine performance, exhaust emissions and operation stability. Methane-hydrogen experiments were performed at equivalence ratio of 0.56 and 2.6 kJ/cycle energy supply rate. Results show that indicated mean effective pressure is maintained regardless of hydrogen content of the gaseous fuel while thermal efficiency is improved and presence of hydrogen reduces cyclic variations. Increasing the fraction of hydrogen in the fuel mixture replaces hydrocarbon fuels and reduces carbon monoxide and hydrocarbon emissions.
Technical Paper

Influences of Turbulence Scale on Development of Spherically Propagating Flame under High EGR Conditions

2015-09-01
2015-01-1868
EGR (Exhaust gas recirculation) can reduce the pumping loss and improve the thermal efficiency of spark ignition engines. The techniques for combustion enhancement under high EGR rate condition has been required for further improvement of the thermal efficiency. In order to develop the technique of combustion enhancement by turbulence, the influences of turbulence scale on combustion properties, such as probability of flame propagation, EGR limit of flame propagation, flame quenching and combustion duration were investigated under the condition of same turbulence intensity. Experiments were carried out for stoichiometric spherically propagating turbulent i-C8H18/Air/N2 flames using a constant volume vessel. It was clarified that all of these combustion properties were affected by the turbulence scale. The development of spherically propagating turbulent flame during flame propagation was affected by the turbulence scale.
Technical Paper

Turbulent Burning Velocities of Stoichiometric Hydrogen-Carbon Monoxide-Air Flames at Elevated Pressures

2014-10-13
2014-01-2701
Syngas, is an alternative fuel consisting mainly of hydrogen and carbon monoxide in various proportions. An understanding of the effects of the varying constituents on the combustion characteristics is important for improvement of the thermal efficiency of syngas-fueled engines. The effects of hydrogen concentration and mixture pressure on the turbulent burning velocity of outwardly propagating stoichiometric flames of hydrogen-carbon monoxide-air were studied in a constant volume fan-stirred combustion chamber at a constant mixture temperature of 350 K. The mole fraction of hydrogen in the binary fuel was varied from 0 to 1.0, at mixture pressures of 0.10, 0.25 and 0.50 MPa. The turbulence intensity was kept constant at 3.27 m/s. For fixed mixture pressures, it was found that the turbulent burning velocity increased with an increase in hydrogen fraction primarily due to increase in the unstretched laminar burning velocity.
Technical Paper

Mixing Process of Direct Injection Hydrogen Jet in a Constant Volume Vessel by Using Spark-Induced Breakdown Spectroscopy

2013-10-14
2013-01-2526
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) have been investigated because of their potential for high thermal efficiency and solving the problems related to knocking, backfiring, and pre-ignition. Wide range flammability limits in hydrogen engine enable smooth engine operation for a very lean mixture with low NOX. However, a too lean mixture may increase ignition delay and causes severe cyclic variations. There is a possibility that the turbulence occurred during injection of fuel surround the spark plug in the combustion chamber is major contributor to this phenomenon. To overcome this problem, a better understanding of the spark discharge and spark ignition during transient hydrogen jet is necessary. Therefore, it is very important to study an effect of local equivalence ratio and behavior of spark discharge in SI engine. This paper describes a mixing process of hydrogen jet using spark-induced breakdown spectroscopy (SIBS) in a constant volume vessel.
Technical Paper

Effects of Hydrogen Concentration on Stoichiometric H2/CH4/Air Premixed Turbulent Flames

2013-10-14
2013-01-2563
Outwardly propagating stoichiometric flames of H2/CH4/air were studied in a constant volume fan-stirred combustion chamber in order to investigate the effects of hydrogen concentration on the turbulent burning velocities. The experiments were conducted at mixture temperature of 350 K and mixture pressure of 0.10 MPa. The mole fraction of hydrogen in the binary fuel was varied from 0 to 1.0 for turbulence intensities equal to 1.23, 1.64 and 2.46 m/s. Laminar flames of the mixtures were first investigated to obtain the unstretched laminar burning velocities and the associated Markstein numbers. The unstretched laminar burning velocity increased non-linearly with increase in hydrogen fraction. The Markstein number and the effective Lewis number of the mixtures varied non-monotonically with hydrogen mole fraction. The Markstein number was used to investigate the influence of thermo-diffusive effects on the turbulent burning velocity.
Technical Paper

In-Cylinder Observations of Chemiluminescence in Turbulent Premixed Flames Using a Spark Plug Sensor with an Optical Fiber

2013-10-14
2013-01-2578
The purpose of this study was to characterize the air/fuel ratio (AFR) of turbulent premixed flames in a spark-ignition (SI) engine. We developed a spark plug sensor with an optical fiber to detect the chemiluminescence spectra, specifically the intensity of the spectral lines related to OH*, CH*, and C2* free radicals. The sensor was composed of a sapphire window and optical fiber and is applicable to automobile SI engines. Measurements of the chemiluminescence intensity from OH*, CH*, and C2* radicals were obtained in turbulent premixed flames with a propane-air mixture for different AFRs in a compression-expansion machine (CEM). The performance of the spark plug sensor was compared with a Cassegrain reflector using an intensified charge-coupled device. The results showed good agreement with measurements obtained using the Cassegrain reflector. The spark plug sensor was shown to be useful for measuring chemiluminescence of turbulent premixed flames in an SI engine.
Journal Article

High-Pressure Hydrogen Jet and Combustion Characteristics in a Direct-Injection Hydrogen Engine

2011-08-30
2011-01-2003
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) promise significant advantages in terms of thermal efficiency and power output, as well as a means of overcoming problems related to knocking, backfiring, and pre-ignition. In a DI hydrogen engine, the fuel/air mixture is formed by injecting a jet of hydrogen into the air inside the combustion chamber. An Ar-ion laser beam was used as a light source to visualize the hydrogen jet in a constant-volume chamber. This allowed us to study the structure of the jet in addition to other physical processes resulting from hydrogen gas injection. Combustion experiments were conducted in a single-cylinder SI optical research engine equipped with a DI system to detect the early kernel growth assisted by the spark, as well as flame propagation. Various equivalence ratios and fuel injection timings were analyzed to identify the effects on combustion.
Technical Paper

Combustion Properties of Hydrogen/Air Mixture with and without dilution

2011-08-30
2011-01-1999
Combustion properties of hydrogen with N₂ dilution were investigated. The laminar and turbulent burning velocities were examined for outwardly propagating stoichiometric H₂/O₂/N₂ flames varying the amount of diluent N₂. The unstretched laminar burning velocity, ul decreased with the increase in the amount of N₂. Markstein number, Ma, the sensitivity of the flame to the stretch due to the thermo-diffusive effects decreased with the increase in the amount of N₂.
Technical Paper

Effects of CO2 and N2 Dilutions on Laminar and Turbulent Flame Propagation

2011-08-30
2011-01-1878
EGR (Exhaust Gas Recirculation) is adopted to reduce NOx emission in spark ignition engines. The effects of dilution with CO₂ and N₂, the main components of EGR, on laminar flame were investigated. It had been found that CO₂ and N₂ dilutions affected not only laminar burning velocity but also the response of flame to the flame stretch due to the change in the thermo-diffusive properties of the mixtures by the dilutions. Thus, turbulent flames were also investigated at fixed flame stretch factors to examine solely the thermo-diffusive effects on turbulent flame.
Technical Paper

Ignition, Combustion and Exhaust Emission Characteristics of Micro-pilot Ignited Dual-fuel Engine Operated under PREMIER Combustion Mode

2011-08-30
2011-01-1764
The objective of this study is to investigate the performance and emissions in a pilot-ignited supercharged dual-fuel engine, fueled with different types of gaseous fuels under various equivalence ratios. It is found that if certain operating conditions are maintained, conventional dual-fuel engine combustion mode can be transformed to the combustion mode with the two-stage heat release. This mode of combustion was called the PREMIER (PREmixed Mixture Ignition in the End-gas Region) combustion. During PREMIER combustion, initially, the combustion progresses as the premixed flame propagation and then, due to the mixture autoignition in the end-gas region, ahead of the propagating flame front, the transition occurs with the rapid increase in the heat release rate.
Technical Paper

Effects of Injection Pressure, Timing and EGR on Combustion and Emissions Characteristics of Diesel PCCI Engine

2011-08-30
2011-01-1769
Effects of injection parameters on combustion and emission characteristics of diesel PCCI engine operating on optical and test engine was investigated. PCCI combustion was achieved through slightly narrow included angle injector, low compression ratio coupled with exhaust gas recirculation. Analysis based on diesel spray evolution, combustion process visualization and analysis was carried out. Spray penetration was evaluated and related to the exhaust emissions. Advancing the injection timing and EGR extended the ignition delay, decreased NOx emissions and increased HC, smoke and CO emissions. Higher injection pressure led to low emissions of NOx, smoke, HC and comparable CO. Optimum spray targeting position for minimum emission was identified. Impingement on the piston surface led to deterioration of emissions and increased fuel consumption while spray targeting the upper edge of Derby hat wall showed improvement in emission and engine performance.
X