Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and distribution, application of phase change materials (PCMs), and implementing insulating materials. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to electrical performance and thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

Toy Model: A Naïve ML Approach to Hydrogen Combustion Anomalies

2024-04-09
2024-01-2608
Predicting and preventing combustion anomalies leads to safe and efficient operation of the hydrogen internal combustion engine. This research presents the application of three machine learning (ML) models – K-Nearest Neighbors (KNN), Random Forest (RF) and Logistic Regression (LR) – for the prediction of combustion anomalies in a hydrogen internal combustion engine. A small experimental dataset was used to train the models and posterior experiments were used to evaluate their performance and predicting capabilities (both in operating points -speed and load- within the training dataset and operating points in other areas of the engine map). KNN and RF exhibit superior accuracy in classifying combustion anomalies in the training and testing data, particularly in minimizing false negatives, which could have detrimental effects on the engine.
Technical Paper

Experimental and Numerical Insights on Battery Venting during Thermal Runaway

2023-04-11
2023-01-0502
Lithium-ion batteries have a well-documented failure tendency under abuse conditions with a significant release of gases and heat. This failure originated from the decomposition reactions within the battery’s electrochemical components, resulting in gas generation and increased internal pressure. To optimize battery safety, it is crucial to understand their behaviors when subjected to abuse conditions. The 18650 format cell incorporates a vent mechanism within a crimped cap to relieve pressure and mitigate the risk of rupture. However, cell venting introduces additional safety concerns associated with flammable gases and liquid electrolyte that flow into the environment. Experiments were performed with two venting caps with well-known geometries to quantify key parameters in describing the external dynamic flow of battery venting and to validate a CFD model.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Combining DMDF and Hybrid Powertrains: A Look on the Effects of Different Battery Modelling Approaches

2022-03-29
2022-01-0658
Fleet electrification has been demonstrated as a feasible solution to decarbonize the heavy-duty transportation sector. The combination of hybridization and advanced combustion concepts may provide further advantages by also introducing reductions on criteria pollutants such as nitrogen oxides and soot. In this scenario, the interplay among the different energy paths must be understood and quantified to extract the full potential of the powertrain. One of the key devices in such powertrains is the battery, which involves different aspects regarding operation, safety, and degradation. Despite this complexity, most of the models still rely on resistance-capacity models to describe the battery operation. These models may lead to unpractical results since the current flow is governed by limiters rather than physical laws. Additionally, phenomena related with battery degradation, which decreases the nominal capacity and enhances the heat generation are also not considered in this approach.
Journal Article

Identifying Key Aspects of Thermal Runaway Modelling for Lithium-ion Battery Cells

2022-03-29
2022-01-0718
Electrification and hybridization of powerplants in the transportation sector is one of the most important changes in the last few decades. Lithium-ion batteries are the main energy storage systems, but despite the maturity of this technology, it has certain constrains compared to traditional internal combustion engines in the day-to-day usage. As the operating conditions of the batteries are pushed to the limits to overcome certain disadvantages relative to other conventional systems like charge and discharge times or vehicle driving range, new concerns and safety limitations must be considered. High power rates and cooling deficiencies can produce excessive operating temperatures within the cells, leading to problems with degradation or even unchain chemical reactions that can end in thermal runaway, one of the most worrying failure modes attaining electric platforms nowadays.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray C/D Nozzles in a Constant Pressure Vessel

2018-09-10
2018-01-1783
The Engine Combustion Network (ECN) is a coordinate effort from research partners from all over the world which aims at creating a large experimental database to validate CFD calculations. Two injectors from ECN, namely Spray C and D, have been compared in a constant pressure flow vessel, which enables a field of view of more than 100 mm. Both nozzles have been designed with similar flow metrics, with Spray D having a convergent hole shape and Spray C a cylindrical one, the latter being therefore more prone to cavitation. Although the focus of the study is on reacting conditions, some inert cases have also been measured. High speed schlieren imaging, OH* chemiluminescence visualization and head-on broadband luminosity have been used as combustion diagnostics to evaluate ignition delay, lift off length and reacting tip penetration. Parametric variations include ambient temperature, oxygen content and injection pressure variations.
Technical Paper

Evaluation of Vortex Center Location Algorithms for Particle Image Velocimetry Data in an Optical Light-Duty Compression Ignition Engine

2018-04-03
2018-01-0209
Ever decreasing permitted emission levels and the necessity of more efficient engines demand a better understanding of in-cylinder phenomena. In swirl-supported compression ignition (CI) engines, mean in-cylinder flow structures formed during the intake stroke deeply influence mixture preparation prior to combustion, heat transfer and pollutant oxidation all of which could potentially improve engine performance. Therefore, the ability to characterize these mean flow structures is relevant for achieving performance improvements. CI mean flow structure is mainly described by a precessing vortex. The location of the vortex center is key for the characterization of the flow structure. Consequently, this work aims at evaluating algorithms that allow for the location of the vortex center both, in ensemble-averaged velocity fields and in instantaneous velocity fields.
Technical Paper

An Investigation of the Engine Combustion Network ‘Spray B’ in a Light Duty Single Cylinder Optical Engine

2018-04-03
2018-01-0220
Engine Combustion Network promotes fundamental investigations on a number of different spray configurations with the goal of providing experimental results under highly controlled conditions for CFD validation. Most of the available experiments up to now have been obtained in spray vessels, which miss some of the interactions governing spray evolution in the combustion chamber of an engine, such as the jet wall interaction and the transient conditions in the combustion chamber. The main aim of the present research is to compare the results obtained with a three-hole, 90 μm injector, known as ECN’s Spray B, in these constant-volume vessels and more recent Heavy-Duty engines with those obtained in a Light Duty Single Cylinder Optical Engine, under inert and reactive conditions, using n-dodecane. In-cylinder conditions during the injection were estimated by means of a 1-D and 0-D model simulation, accounting for heat transfer and in-cylinder mass evolution.
Technical Paper

Soot Characterization of Diesel/Gasoline Blends Injected through a Single Injection System in CI engines

2017-09-04
2017-24-0048
In the past few years’ various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions

2017-03-28
2017-01-0843
Recent studies have shown that the use of highly premixed dual fuel combustion reduces pollutant emissions and fuel consumption in CI engines. The most common strategy for dual fueling is to use two injection systems. Port fuel injection for low reactivity fuel and direct injection for high reactivity fuel. This strategy implies some severe shortcomings for its real implementation in passenger cars such as the use of two fuel tanks. In this sense, the use of a single injection system for dual fueling could solve this drawback trying to maintain pollutant and efficiency benefits. Nonetheless, when single injection system is used, the spray characteristics become an essential issue. In this work the fundamental characteristics of dual-fuel sprays with a single injection system under non-evaporating engine-like conditions are presented.
Technical Paper

Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine

2016-04-05
2016-01-0646
Regulated emissions and fuel consumption are the main constraints affecting internal combustion engine (ICE) design. Over the years, many techniques have been used with the aim of meeting these limitations. In particular, exhaust gas recirculation (EGR) has proved to be an invaluable solution to reduce NOx emissions in Diesel engines, becoming a widely used technique in production engines. However, its application has a direct effect on fuel consumption due to both the changes in the in-cylinder processes, affecting indicated efficiency, and also on the air management. An analysis, based on the engine Global Energy Balance, is presented to thoroughly assess the behavior of a HSDI Diesel engine under variable EGR conditions at different operating points. The tests have been carried out keeping constant the conditions at the IVC and the combustion centering.
Journal Article

An Investigation of Radiation Heat Transfer in a Light-Duty Diesel Engine

2015-09-06
2015-24-2443
In the last two decades engine research has been mainly focused on reducing pollutant emissions. This fact together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). In this framework, the heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminution. In particular, in modern direct-injection diesel engines, the radiation emission from soot particles can constitute a significant component of the efficiency losses. Thus, the main of objective of the current research was to evaluate the amount of energy lost to soot radiation relative to the input fuel chemical energy during the combustion event under several representative engine loads and speeds. Moreover, the current research characterized the impact of different engine operating conditions on radiation heat transfer.
X