Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental and Numerical Analysis of an Outward Opening Injector Pintle Dynamics

2023-10-24
2023-01-1810
Direct injection strategies have been successfully used on spark ignited internal combustion engines for improving performance and reducing emissions. Among the different technologies available, outward opening injectors seem to have found their place in renewable applications running on gaseous fuels, including natural gas or hydrogen, as well as in a few specific liquid fuel applications. In order to understand the key operating principles of these devices, their limitations and the resulting sprays, it is necessary to accurately describe the pintle dynamics. The pintle’s relative position with respect to the injector body defines the internal flow geometry and therefore the injection rates and spray characteristics. In this paper both numerical and experimental investigations of the dynamics of an outward opening injector pintle have been carried out.
Technical Paper

Smart Spark Plug for Proper Combustion Timing in Gasoline Engines and Detection of Misfire and Knock

2020-04-14
2020-01-0790
Internal combustion engines are required to achieve production goals of better fuel economy, improved fuel economy and reduced emissions in order to meet the current and future stringent standards. To achieve these goals, it is essential to control the combustion process using an in-cylinder combustion sensor and a system that produces a feedback signal to the ECU. This paper presents a system based on combustion ionization that includes a newly developed smart spark plug capable of sensing the whole combustion process. A unique feature of the smart spark plug system is its ability to sense the early stages of combustion and produce a complete ion current signal that accurately identifies and can be used for the control of the start of combustion.
Technical Paper

Development of a 48 V P0 Demonstration Vehicle with eBooster® Air Charging

2018-04-03
2018-01-0418
The design of a demonstration vehicle is presented where improvements to the electrical and air induction systems are made which provide increased performance with improved fuel economy. This is made possible by a 48 V architecture which enables the deployment of new components, specifically a belted motor generator unit (MGU) and electrically-driven compressor (eBooster®). The synergy between these components enables energy efficient means to collect regenerated energy and provide added torque, faster engine response, and extended engine off operation among a list of added features. Control features and strategy are highlighted along with simulation and vehicle test data. Resultant performance and fuel economy benefits are reviewed which support the contention of 48 V being a cost effective architecture to enable CO2 reduction relative to a higher voltage hybrid.
Technical Paper

Simulation and Comparison of Autoignition of Homogeneous Fuel/Air Mixtures and Sprays in Diesel Engines

2016-04-05
2016-01-0311
All previous correlations of the ignition delay (ID) period in diesel combustion show a positive activation energy, which means that shorter ID periods are achieved at higher charge temperatures. This is not the case in the autoignition of most homogeneous hydrocarbons-air mixtures where they experience the NTC (Negative Temperature Coefficient ) regime in the intermediate temperature range, from about 800 K to 1000 K). Here, the autoignition reactions slow down and longer ID periods are experienced at higher temperatures. Accordingly the global activation energy for the autoignition reactions of homogeneous mixtures should vary from positive to negative values.
Technical Paper

Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle

2013-10-14
2013-01-2700
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Variable Intake Cam Duration Technologies for Improved Fuel Economy

2012-09-10
2012-01-1641
Using a 3 liter, 4 valves per cylinder, V6 Diesel engine model, this study investigates late intake valve closing (LIVC) time in an effort to reduce the fuel consumption of the engine. Two different intake cam duration technologies for diesel engines are evaluated using a 1-D engine simulation software code. The first method utilized for duration control delays the effective closing of the intake valve by moving one intake cam lobe with respect to the other baseline intake cam lobe. In the second method, the closing of both intake valves is delayed by the introduction of an adjustable dwell period during the closing portion of the valve motion. During this mid-lift dwell period, the lift is held at a constant value until it goes into the closing phase. The systems are evaluated and compared at 4 operating points of varying engine speed and load. At each operating point, while engine load is held constant, intake valve closing time is varied.
Journal Article

Prediction of Surge in a Turbocharger Compression System vs. Measurements

2011-05-17
2011-01-1527
The unsteady surge behavior of a turbocharger compression system is studied computationally by employing a one-dimensional engine simulation code. The system modeled represents a new turbocharger test stand consisting of a compressor inlet duct breathing from ambient, a centrifugal compressor, an exit duct connected to an adjustable-volume plenum, followed by another duct which incorporates a control valve and an orifice flow meter before exhausting to ambient. Characteristics of mild and deep surge are captured as the mass flow rate is reduced below the stability limit, including discrete sound peaks at low frequencies along with their amplitudes in the compressor (downstream) duct and plenum. The predictions are then compared with the experimental results obtained from the cold stand placed in a hemi-anechoic room.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Journal Article

Simulation of Mild Surge in a Turbocharger Compression System

2010-10-25
2010-01-2142
The behavior of the compression system in turbochargers is studied with a one-dimensional engine simulation code. The system consists of an upstream compressor duct open to ambient, a centrifugal compressor, a downstream compressor duct, a plenum, and a throttle valve exhausting to ambient. The compression system is designed such that surge is the low mass flow rate instability mode, as opposed to stall. The compressor performance is represented through an extrapolated steady-state map. Instead of incorporating a turbine into the model, a drive torque is applied to the turbocharger shaft for simplification. Unsteady compression system mild surge physics is then examined computationally by reducing the throttle valve diameter from a stable operating point. Such an increasing resistance decreases the mass flow rate through the compression system and promotes surge.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Technical Paper

Coupled Thermal-Engine Simulation for a Light Duty Application

2010-04-12
2010-01-0806
The thermal management of vehicles has increased in importance due to the significant role of friction and auxiliary losses in engine operation on CO2 emissions. To evaluate different system and component concepts regarding their influence on fuel consumption, simulation offers a wide range of opportunities. In this paper a fully integrated model is presented utilizing the GT-Suite commercial code. It contains a diesel engine system model, a cooling circuit including a simplified model for the cooler package in the vehicle front end and a vehicle model. The purpose of this model is the investigation of cooling system components and control strategies with different engine inputs. A significant run time advantage is achieved by using a mean value engine model, which has a reduced number of input parameters. The simulation using the integrated model can be carried out within an acceptable time frame which enables vehicle drive cycle analysis.
Technical Paper

Valve-Event Modulated Boost System

2010-04-12
2010-01-1222
Prior work with the concept of dividing the exhaust process into an early and late phase has shown the potential of applying only the early stage (blow-down) of the exhaust period directly to a turbocharger or turbocharger system, and the later stage (scavenge) arranged to bypass the turbine. In this manner, the exhaust backpressure required to extract high turbine work from the engine can be isolated from the displacement phase of the exhaust stroke and thereby greatly reduce the exhaust pumping work and Residual Gas Fraction. In previously-published efforts, the challenges of valve-event control and high turbine inlet temperature have been revealed. The BorgWarner Engine Systems Group, in conjunction with Presta, has applied a cam-phaser controlled concentric camshaft system to the exhaust side of a divided exhaust port 4-valve per cylinder DOHC GDI engine, to enable variable phasing between the Blow-down and Scavenge cam profiles.
Technical Paper

Requirements of External EGR Systems for Dual Cam Phaser Turbo GDI Engines

2010-04-12
2010-01-0588
It has been clearly demonstrated separately, that the application of both Dual Cam Phasers (DCP) and External Cooled EGR systems are highly beneficial to improving the efficiency of highly-boosted GDI engines. DCP systems can optimize the volumetric efficiency at WOT conditions, improve boost and transient response at low engine speeds, and provide internal EGR at low RPM part-load conditions. External cooled EGR has been demonstrated to dramatically improve the fuel consumption, lower turbine inlet temperature, and improve emissions at high power conditions. In previous investigations by the BorgWarner Engine Systems Group, we showed that full engine speed/load range EGR coverage can be obtained by combining High Pressure Loop and Low Pressure Loop external EGR systems with a DCP strategy.
Technical Paper

Analysis of Diesel Engine Emissions Reduction by Late Intake Valve Close and VTG Turbocharger Using 1-D Simulation

2008-10-06
2008-01-2444
A 1-D GT-Power model based investigation has been carried out to identify the impact of late intake valve closing (LIVC) on fuel economy and emission reduction of a modern small bore diesel engine. The diesel engine examined employed a variable turbine geometry (VTG) turbocharger with air-to-air charge cooler, cooled low pressure exhaust gas re-circulation (LP-EGR), and cooled high pressure exhaust gas re-circulation (HP-EGR). The LIVC system investigated varied the closing time of the intake valve by increasing or decreasing the dwell at the maximum valve lift point. This paper describes how the fuel economy and NOx emission of the diesel engine were affected by varying the intake valve closing time. The intake valve closing time was delayed by as much as 60 degrees.
Journal Article

Influence of Pre Turbo Catalyst Design on Diesel Engine Performance, Emissions and Fuel Economy

2008-04-14
2008-01-0071
This paper gives a thorough review of the HC/CO emissions challenge and discusses the effects of different diesel oxidation catalyst designs in a pre turbine and post turbine position on steady state and transient turbo charger performance as well as on HC and CO tailpipe emissions, fuel economy and performance of modern Diesel engines. Results from engine dynamometer testing are presented. Both classical diffusive and advanced premixed Diesel combustion modes are investigated to understand the various effects of possible future engine calibration strategies.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Journal Article

Impact of A/F Ratio on Ion Current Features Using Spark Plug with Negative Polarity

2008-04-14
2008-01-1005
The increasing interest and requirement for improved electronic engine control during the last few decades, has led to the implementation of several different sensor technologies. The process of utilizing the spark plug as a combustion probe to monitor the different combustion related parameters such as knock, misfire, Ignition timing, and air-fuel ratio have been the subject of research for some time now. The air-fuel ratio is one of the most important engine operating parameters that has an impact on the combustion process, engine-out emissions, fuel economy, indicated mean effective pressure and exhaust gas composition and temperature. Furthermore, air-fuel ratio affects the ion produced during flame kernel initiation and post flame propagation. In this paper, an investigation is made to determine the effect of air-fuel ratio on ion current, using gasoline and methane under different spark plug designs and engine operating conditions.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
X