Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Technical Paper

Artificial Neural Network for Airborne Noise Prediction of a Diesel Engine

2024-06-12
2024-01-2929
The engine acoustic character has always represented the product DNA, owing to its strong correlation with in-cylinder pressure gradient, components design and perceived quality. Best practice for engine acoustic characterization requires the employment of a hemi-anechoic chamber, a significant number of sensors and special acoustic insulation for engine ancillaries and transmission. This process is highly demanding in terms of cost and time due to multiple engine working points to be tested and consequent data post-processing. Since Neural Networks potentially predicting capabilities are apparently un-exploited in this research field, the following paper provides a tool able to acoustically estimate engine performance, processing system inputs (e.g. Injected Fuel, Rail Pressure) thanks to the employment of Multi Layer Perceptron (MLP, a feed forward Network working in stationary points).
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Training / Education

Autonomous Vehicle System and Control Architecture

2024-06-03
This 4-week virtual-only experience is conducted by leading experts in the autonomous vehicle industry and academia. You’ll develop an understanding of the fundamentals of AV architecture, including mechatronics, kinematics, and the sense-think-act framework in autonomous systems. The course builds a connection for how robotics are used in autonomous vehicles and provides you with demonstrations, procedures, and the skills necessary to program a robot with basic commands using the Robot Operating System (ROS).
Technical Paper

Experimental Analysis of Force Recovery and Response Time using Strain Measurement Sensors in Stress Wave Force Balance

2024-06-01
2024-26-0451
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses.
Technical Paper

Analysis for Effect of Angle of Attack on Coefficient of Lift of Wing Structure

2024-06-01
2024-26-0450
Dimensional optimization has always been a time consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. In this study CFD analysis is performed to obtain pressure counter of wings. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the C L /C D ratio.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Design and Development of Terminal Velocity Measurement System for Descending Modules

2024-06-01
2024-26-0438
Gaganyaan programme is India's prestigious human space exploration endeavour. During the re-entry of the spacecraft, achieving the minimum terminal velocity is paramount to ensure the crew's safety upon landing. Therefore, acquiring accurate in-flight velocity data is essential for comprehensively understanding the landing dynamics and facilitating post-flight data analysis and validation. Moreover, terminal velocity plays a pivotal role in the qualification of parachute systems during platform-drop tests where the objective is to minimize the terminal velocity for safe impact. Terminal velocity also serves as a critical design parameter for the crew seat attenuation system. In addition to terminal velocity, it is equally necessary to characterize the horizontal velocities acting on the decelerating body due to various factors such as parachute sway and wind drift. This data also plays a central role in refining our systems for future enhancements.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
Technical Paper

Analytical and Experimental Evaluation of Seal Drag using Variety of Different Fluids

2024-06-01
2024-26-0423
The present study discusses about the determination of the Seal drag force in the application where elastomeric seal is used with metallic interface in the presence of different fluids. An analytical model was constructed to predict the seal drag force and experimental test was performed to check the fidelity of the analytical model. A Design of Experiment (DoE) was utilized to perform experimental test considering different factors affecting the Seal drag force. Statistical tools such as Test for Equal Variances and One way Analysis of Variance (ANOVA) were used to draw inferences for population based on samples tested in the DoE test. It was observed that Glycol based fluids lead to lubricant wash off resulting into increased seal drag force. Additionally, non-lubricated seals tend to show higher seal drag force as compared to lubricated seals. Keywords: Seal Drag, DoE, ANOVA
Technical Paper

Development of an Autonomous Blimp (Airship) for Indoor Navigation

2024-06-01
2024-26-0436
Uncrewed Aerial vehicles are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. Different types of aircrafts such as fixed wing UAVs, rotor wing UAVs are used for the mentioned applications depending upon the application requirements. One such category of UAVs is the lighter-than-air aircrafts, that provide their own set of advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range, and safer and more comfortable Human-machine-Interaction, etc. as compared to fixed wing and rotor wing UAVs due to their design. A ROS (Robot Operating System) based control system was developed for controlling the blimp.
Technical Paper

A Comparative Study of RANS and Machine Learning Techniques for Aerodynamic Analysis of Airfoils

2024-06-01
2024-26-0460
It is important to accurately predict the aerodynamic properties for designing applications which involves fluid flows, particularly in the aerospace industry. Traditionally, this is done through complex numerical simulations, which are computationally expensive, resource-intensive and time-consuming, making them less than ideal for iterative design processes and rapid prototyping. Machine learning, powered by vast datasets and advanced algorithms, offers an innovative approach to predict airfoil characteristics with remarkable accuracy, speed, and cost-effectiveness. Machine learning techniques have been applied to fluid dynamics and have shown promising results. In this study, machine learning model called the back-propagation neural network (BPNN) is used to predict key aerodynamic coefficients of lift and drag for airfoils.
Event

2024-05-02
Event

Program - Urban Ground Mobility Digital Summit

2024-05-02
If you’re working to balance the implementation of today’s urban ground mobility (UGM) vehicles with tomorrow’s biggest challenges and opportunities, then you belong at the premier of SAE’s Urban Ground Mobility Digital Summit.
X