Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Proposal and Validation of 3D-CFD Framework for Ultra-Lean Hydrogen Combustion in ICEs

2024-04-09
2024-01-2685
In recent months, the increasing debate within the European Union to review the ban on internal combustion engines has led to the pursuit of environmentally neutral solutions for ICEs, as an attempt to promote greater economic and social sustainability. Interest in internal combustion engines remains strong to uphold the principle of technological neutrality. In this perspective, the present paper proposes a numerical methodology for 3D-CFD in-cylinder simulations of hydrogen-fueled internal combustion engines. The combustion modelling relies on G-equation formulation, along with Damköhler and Verhelst turbulent and laminar flame speeds, respectively. Numerical simulations are validated with in-cylinder pressure traces and images of chemiluminescent hydrogen flames captured through the piston of a single-cylinder optical spark-ignition engine.
Technical Paper

Effect of In-Cylinder Flow Motion on Fuel-Air Mixture Formation in a Medium-Duty DI-SI H2 Engine: An Experimentally Supported CFD Study

2024-04-09
2024-01-2117
The increased utilization of batteries and fuel-cells for powering electric applications, as well as bio- and e-fuels into internal combustion engines are seen as options to lower the carbon footprint of industry and transportation sectors. When high power outputs and fast refueling are requisites, H2 ICEs may be a relevant choice. Applications include electricity conversion within a genset or mechanical energy in a vehicle. Within this framework, a John Deere 4045 Diesel engine converted to a H2 single-cylinder is studied at relevant operating conditions for the mentioned use cases, which pose high torque and power output requirements. The modified engine integrates a Phinia DI-CHG 10 outward-opening H2 injector instead of the Diesel unit, as well as a spark-plug rather than the glow-plug.
Technical Paper

Piston Geometries Impact on Spark-Ignition Light-Duty Hydrogen Engine

2024-04-09
2024-01-2613
The European Union aims to be climate neutral by 2050 and requires the transport sector to reduce their emissions by 90%. The deployment of H2ICE to power vehicles is one of the solutions proposed. Indeed, H2ICEs in vehicles can reduce local pollution, reduce global emissions of CO2 and increase efficiency. Although H2ICEs could be rapidly introduced, investigations on hydrogen combustion in ICEs are still required. This paper aims to experimentally compare a flat piston and a bowl piston in terms of performances, emissions and abnormal combustions. Tests were performed with the help of a single cylinder Diesel engine which has been modified. In particular, a center direct injector dedicated to H2 injection and a side-mounted spark plug were installed, and the compression ratio was reduced to 12.7:1. Several exhaust gas measurement systems complete the testbed to monitor exhaust NOx and H2.
Technical Paper

Effects of the Combustion Enhancer Containing Alkyl Nitrate (CEN) to Methanol in a Direct-Injection Compression Ignition (DICI) Engine

2023-10-31
2023-01-1619
When a biofuel, methanol is an interesting alternative for internal combustion engines (ICE). Despite drawbacks such as misfiring or instabilities at low loads, methanol has several advantages. Today, dual-fuel systems allow the use of methanol in combination with diesel fuel. This paper will present a different approach, the ability to use methanol in a flex-fuel system. The addition of a combustion enhancer containing alkyl nitrate (CEN) allows the use of methanol in a direct-injection compression ignition (DICI) engine without any changing. In this paper, different volume fractions of this additive are tested. The aim is to show the effect of the CEN on the combustion of methanol. The effect of CEN on methanol has been confirmed thanks to previous tests carried out on a Rapid Compression Machine (RCM). Ignition delay times (IDT) and auto-ignition temperature were reduced with small amounts of CEN.
Technical Paper

Effects of the Combustion Enhancer Containing Alkyl Nitrate (CEN) to Dodecane and HVO as Pilot Fuels on a Compression Ignition Engine Operating in Dual-Fuel with Ammonia

2023-10-31
2023-01-1625
Ammonia is a widely used and known chemical. Today it is seen as a carbon free solution to fuel thermal engines especially in applications where other solutions would not be realistic. For marine applications, electrical or fuel cells solutions for example would not allow spans long enough to sustain big cargo ships ranges. Engine manufacturer such as MAN, Wartsila or Win-GD have already announced the development of marine engine running on ammonia. But while ammonia is a non-CO2 emitting fuel, it has some caveats such as being gaseous in standard conditions and hard to ignite. As it is now, ammonia is usually used in compression ignition engines with the help of highly reactive carbonated pilot fuels. Many forms of dual-fuel combustion are conceivable, although all the simple ones use a carbon-based fuel and quite often originated from fossil oil.
Technical Paper

Thermodynamic and Tribological Analysis of an Innovative Mechanism for Reciprocating Machines

2023-08-28
2023-24-0016
Research and development studies regarding the internal combustion engines are, now more than ever, crucial in order to prevent a premature disposal for this application. An innovative technology is analyzed in this paper. The traditional slider-crank mechanism is replaced by a system of two ring-like elements crafted in such a way to transform the rotating motion of one element in the reciprocating motion of the other. This leads both to a less complex engine architecture and to the possibility to obtain a wide range of piston laws by changing the profile of the two cams. The relative motion of the cams is the peculiar feature of this engine and, due to this, alongside with the thermodynamic analysis, also the tribological aspects are investigated. 3D-CFD simulations are performed for several piston laws at different engine speeds to evaluate the cylinder pressure trace to be used as input data for the development of the tribological model.
Technical Paper

Experimental Investigation on the Combustion of Biogas Containing Hydrogen in a HCCI Engine

2023-08-28
2023-24-0056
Biogas is a gas resulting from biomass, with a volumetric content of methane (CH4) usually ranging between 50% and 70%, and carbon dioxide (CO2) content between 30% and 50%; it can also contain hydrogen (H2) depending on the feedstock. Biogas is generally used to generate electricity or produce heat in cogeneration system. Due to its good efficiency through the rapid combustion and lean air-fuel mixture, Homogeneous Charge Compression Ignition (HCCI) engine is a good candidate for such application. However, the engine load must be kept low to contain the high-pressure gradients caused by the simultaneous premixed combustion of the entire in-cylinder charge. The homogenous charge promotes low particulate emissions, and the dilution helps in containing maximum in-cylinder temperature, hence reducing nitrogen oxide emissions. However, HC and CO levels are in general higher than in SI combustion.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

CFD Simulations and Potential of Nanofluids for PEM Fuel Cells Cooling

2023-08-28
2023-24-0144
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are undergoing a rapid development, due to the ever-growing interest towards their use to decarbonize power generation applications. In the transportation sector, a key technological challenge is their thermal management, i.e. the ability to preserve the membrane at the optimal thermal state to maximize the generated power. This corresponds to a narrow temperature range of 75-80°C, possibly uniformly distributed over the entire active surface. The achievement of such a requirement is complicated by the generation of thermal power, the limited exchange area for radiators, and the poor heat transfer performance of conventional coolants (e.g., ethylene glycol). The interconnection of thermal/fluid/electrochemical processes in PEMFCs renders heat rejection as a potential performance limiter, suggesting its maximization for power density increase.
Technical Paper

Experimental Combustion Analysis in a Gasoline Baseline Hydrogen-Fueled Internal Combustion Engine at Ultra-Lean Conditions

2023-08-28
2023-24-0073
Hydrogen-fueled internal combustion engines (H2ICEs) have emerged as a promising technology for reducing greenhouse gas emissions in the transportation sector. However, due to the unique properties of hydrogen, especially under ultra-lean conditions, the combustion characteristics of hydrogen flames differ significantly from those of conventional fuels. This research focuses on evaluating the combustion process and cycle-to-cycle variations (CCVs) in a single-cylinder port-fuel injection H2ICE, as well as their impact on performance parameters. To assess in-cylinder combustion, three indicators of flame development are utilized and compared to the fundamental properties of hydrogen. The study investigates the effects of various factors including fuel-air equivalence ratio (ranging from 0.2 to 0.55), engine load (IMEP between 1 and 4 bar), and engine speed (900 to 1500 rpm).
Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

Hydrogen Jet Characterization of an Internal Combustion Engine Injector Using Schlieren Imaging

2023-04-11
2023-01-0301
As the world moves towards a decarbonized motorization, Hydrogen became a strong candidate to replace Diesel and Gasoline. Possibly used in a DI configuration, a huge challenge is the injection and mixing process of the hydrogen in the combustion chamber. In this paper we will focus on the characterization of a compressed hydrogen jet using Schlieren imaging technique and image processing. The injector used in those tests is designed and manufactured by BorgWarner to be used specifically with Compressed Hydrogen Gas (CHG). It operates at medium pressure. Two injection pressures had been used to study the jet development in different conditions. The cylinder pressure (back pressure) will vary between 1.2 bar and 15 bar while the temperature will go from 20°C to 150°C. The discussed tests were made in full nitrogen conditions to avoid any ignition of the hydrogen jet.
Technical Paper

Effect of Standard Tuning Parameters on Mixture Homogeneity and Combustion Characteristics in a Hydrogen Direct Injection Engine

2023-04-11
2023-01-0284
Dihydrogen, as a zero CO2 fuel, is a strong candidate for internal combustion engine to limit global warming. This study shows the impact of standard tuning parameters on mixture homogeneity and combustion characteristics. A 2.2L Diesel engine on which the head was reworked to allow side mounted direct injector and central mounted spark plug was selected. The discussed tests were made at low engine speed and partial load. A spark advance sweep at different air-fuel ratios (λ) was conducted. The exponential relation between λ and NOx emissions is highly marked and extremely low NOx emissions up to 1.7 g/kWh at minimum spark advance for maximum brake torque can be measured. A λ sweep was performed at different starts of injection (SOI). The results show that, depending on the engine speed, a later SOI might lead to lower NOx emissions. For a λ setpoint of 1.8, at 1500 rpm, late SOI leads to 30% higher NOx emissions where at 2500 rpm these emissions are 26% lower.
Technical Paper

Combustion Cycle-To-Cycle Variation Analysis in Diesel Baseline Hydrogen-Fueled Spark-Ignition Engines

2023-04-11
2023-01-0290
In the search for zero-carbon emissions and energy supply security, hydrogen is one of the fuels considered for internal combustion engines. The state-of-the-art studies show that a good strategy to mitigate NOx emissions in hydrogen-fueled spark-ignition engines (H2ICE) is burning ultra-lean hydrogen-air mixtures in current diesel architectures, due to their capability of standing high in-cylinder pressures. However, it is well-known that decreasing equivalence ratio leads to higher engine instability and greater cycle-to-cycle variations (CCVs). Nevertheless, hydrogen flames, especially at low equivalence ratios and high pressures, present thermodiffusive instabilities that speed up combustion, changing significantly the flame development and possibly its variability. This work evaluates the hydrogen combustion and their CCVs in two single-cylinder diesel baseline H2ICEs (light-duty and medium-duty) and their influence on performance parameters.
Technical Paper

Preliminary Assessment of Hydrogen Direct Injection Potentials and Challenges through a Joint Experimental and Numerical Characterization of High-Pressure Gas Jets

2022-09-16
2022-24-0014
The interest towards hydrogen fueling in internal combustion engines (ICEs) is rapidly growing, due to its potential impact on the reduction of the carbon footprint of the road transportation sector in a short-term scenario. While the conversion of the existing fleet to a battery-electric counterpart is highly debated in terms of both technical feasibility and life-cycle-based environmental impact, automotive researchers and technicians are exploring other solutions to reduce, if not to nullify, the carbon footprint of the existing ICE fleet. Indeed, ICE conversion to “green” fuels is seen as a promising short-term solution which does not require massive changes in powertrain production and end-of-life waste management. To better evaluate potentials and challenges of hydrogen fueling, a clear understanding of fuel injection and mixture formation prior to combustion is mandatory.
Journal Article

Numerical Characterization of Hydrogen Combustion in a High-Performance Engine: Potentials, Limitations, Modelling Uncertainties

2022-09-16
2022-24-0016
In the last years, pushed by a combination of environmental concerns and technological competition with alternative powertrain architectures, internal combustion engines (ICEs) have seen a growing interest in the adoption of greener fuels. Due to increasing restrictions on ICE tailpipe emissions and loudly advertised bans of ICEs from the passenger car market, OEMs find themselves at a very important crossroad: a complete electrification of their car fleet or the adoption of disruptive solutions in the existing ICE technology, such as the use of carbon-neutral or carbon-free fuels. In this paper the authors provide a CFD assessment of both potentials and limitations of the conversion of an existing direct-injected spark-ignited (DISI) engine for high-performance applications to a hydrogen-fuelled unit. A preliminary validation of the modelling framework for the conventional gasoline fuelling is performed to reduce modelling uncertainties.
Technical Paper

Numerical Comparison of the Performance of Four Cooling Circuit Designs for Proton Exchange Membrane Fuel Cells (PEMFCs)

2022-03-29
2022-01-0685
Polymer Electrolyte Membrane Fuel Cell (PEMFC) are among the most promising technologies as energy conversion devices for the transportation sector due to their potential to eliminate, or greatly reduce, the production of greenhouse gases. One of the current issues with this type of technology is thermal management, which is a key aspect in the design and optimization of PEMFC, whose main aim is an effective and balanced heat removal, thus avoiding thermal gradients leading to a cell lifetime reduction as well as a decrease in the output performance. In addition, a uniform temperature distribution contributes to the achievement of a uniform current density, as it affects the rate of the electrochemical reaction. This is made even more challenging due to the low operating temperature (80°C), reducing the temperature difference for heat dissipation, and leaving a critical role to the design and optimization of the cooling circuit design.
Technical Paper

A Simple CFD Model for Knocking Cylinder Pressure Data Interpretation: Part 1

2021-09-05
2021-24-0051
Knock is one of the main limitations on Spark-Ignited (SI) Internal Combustion Engine (ICE) performance and efficiency and so has been the object of study for over one hundred years. Great strides have been made in terms of understanding in that time, but certain rather elementary practical problems remain. One of these is how to interpret if a running engine is knocking and how likely this is to result in damage. Knocking in a development environment is typically quantified based on numerical descriptions of the high frequency content of a cylinder pressure signal. Certain key frequencies are observed, which Draper [1] explained with fundamental acoustic theory back in 1935. Since then, a number of approaches of varying complexity have been employed to correlate what is happening within the chamber with what is measured by a pressure transducer.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
X