Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Lightweight Design of CFRP Automobile Tailgate Based on Multi-Step Optimization

2019-04-02
2019-01-1103
As a critical part of auto-body, the design of tailgate not only affects the beauty, usability and safety of automobile, but also involves more and more issues about environmental protection and energy saving. Hence, it is of vital importance to investigate lightweight of tailgate. This paper mainly focuses on lightweight design of CFRP tailgate based on conventional SUV metal tailgate, which can be realized under the condition of meeting requirements of stiffness, modal and manufacturing with the adoption of multi-step optimization method. To start with, finite element (FE) model of metal tailgate is established. Meanwhile, the stiffness and modal analyses, including bending stiffness, torsional stiffness, lateral stiffness, vertical stiffness and free modal are set up. Then, the structural performances of metal tailgate are analyzed, and the topology optimization of CFRP tailgate is performed.
Journal Article

Efficient Supercapacitors Based on Co9S8/Graphene Composites for Electric Vehicles

2018-04-03
2018-01-0440
Nowadays, SC is recognized as a key element of hybrid energy storage system in modern energy supply chain for electric vehicles (EVs). Co9S8 as a promising electrode material attracts much attention for supercapacitor owing to its superior electrochemical capacity. However, its poor stability and electronic conductivity, which result in inferior cycling performance and rate capability, have seriously limited the practical application of Co9O8 in supercapacitors. In this article, Co9S8 nanoparticles were embedded in reduced graphene oxide (rGO) via a simple anneal approach as high efficient and stable electrodes for SCs. The Co9S8/rGO composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The Co9S8 nanoparticles were inserted tightly between the rGO layers due to strong intermolecular forces, preventing the cluster in reduction process of rGO from graphene oxide (GO).
Journal Article

Study on Engine Hood with Negative Poisson's Ratio Architected Composites Based on Pedestrian Protection

2017-03-28
2017-01-0368
The conventional hood with single material and stiffener structural form conceals some limitations on pedestrian protection and lightweight, not satisfying the requirements of structural strength, pedestrian protection and lightweight contradictory with each other at the same time. In this paper, a novel type hood is proposed to develop sandwich structure using architected cellular material with negative Poisson's ratio (NPR) configuration based on the decoupling thought of structural strength and energy absorption. Core-layer aluminum alloy material with NPR is used to meet the requirement of impact energy absorption, inner and outer skin using carbon fiber is selected to achieve high structural stiffness needed. This paper starts from the relations between geometric parameters of core-layer architected cellular material and mechanical properties, on this basis, the optimal geometric parameters can be expected using the multiobjective optimization method.
X