Refine Your Search

Topic

Search Results

Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
CURRENT
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Spark Arrester Test Carbon

2020-10-06
CURRENT
J997_202010
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
HISTORICAL
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

Measurement of Fuel Evaporative Emissions from Gasoline Powered Passenger Carsand Light Trucks Using the Enclosure Technique

2000-12-07
CURRENT
J171_200012
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: a. A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle's tank is raised from 15.6 to 28.9 °C (60 to 84 °F) b. A 17.9 km (11.1 mile) drive on a chassis dynamometer c. A 1 h hot soak immediately following the 17.9 km (11.1 mile) drive The method described in this document, commonly known as the SHED (Sealed Housing for Evaporative Determination) technique, employs an enclosure in which the vehicle is placed during the diurnal and hot soak phases of the test.
Standard

Guide to the Application and Use of Engine Coolant Pump Face Seals

2000-11-07
HISTORICAL
J1245_200011
This SAE Recommended Practice is intended as a guide in the usage of mechanical face seals for the engine coolant pump application. The main purpose of the document is to fill the void caused by the lack of a ready source of practical information on the design and use of the engine coolant pump face seal. Included in the document is a compilation of present practices, as in a description of the various types of seals, material combinations, design data, tolerances, drawing format, qualification and inspection information, and quality control data. The terminology used throughout the document is recommended and, through common usage, is hoped to promote uniformity in seal nomenclature.
Standard

Seals—Bond Test Fixture and Procedure

2000-10-09
HISTORICAL
J1900_200010
Bond, as it relates to elastomeric seals, is defined as “The adhesion, established by vulcanization, between two cured elastomeric surfaces, or between one cured elastomeric surface and one nonelastomeric surface.”1 Vulcanization refers in this case to chemical bonding. Good bond is essential to the function of elastomeric radial lip seals and other precision bonded parts. This SAE Recommended Practice describes a universal bond test fixture developed by the RMA that can be mounted to a conventional tensile test machine. This will allow a quantitative evaluation of bond rather than a merely qualitative one.
Standard

REPORTING ON EMISSION TESTING FOR IN-USE LIGHT-DUTY TRUCKS AND PASSENGER VEHICLES

2000-10-01
HISTORICAL
J1712_200010
This SAE Recommended Practice applies to the reporting of laboratory and test site data from the gaseous and evaporative emission tests of in-use light-duty trucks and passenger vehicles. This document describes the reporting of procedures, fuel specifications, and vehicle information necessary to compare the results of in-use tests. Any variations in vehicles, instrumentation, test equipment, or test program purpose should be adequately described.
Standard

SEALS—TERMINOLOGY OF RADIAL LIP

1997-05-01
HISTORICAL
J111_199705
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1995-07-03
HISTORICAL
J1456_199507
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

RUBBER RINGS FOR AUTOMOTIVE APPLICATIONS

1995-06-29
HISTORICAL
J120_199506
This SAE Recommended Practice covers the dimensional and material requirements of rubber O-rings for automotive application and rectangular section rubber seal rings for automotive applications.
Standard

IMPACT OF ALTERNATIVE FUELS ON ENGINE TEST AND REPORTING PROCEDURES

1995-06-28
HISTORICAL
J1515_199506
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1995-03-25
HISTORICAL
J90_199503
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork, cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200—ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
Standard

Diesel Smoke Measurement Procedure

1995-03-01
HISTORICAL
J35_199503
This SAE Recommended Practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading, and calculation for evaluation of an engine's transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine's transient smoke characteristics.
Standard

DESIGN GUIDE FOR FORMED-IN-PLACE GASKETS

1994-04-05
HISTORICAL
J1497_199404
This SAE Recommended Practice presents information which is intended as a guide for proper designing, selection, application, and servicing of liquid, formed-in-place gasket (FIPG) materials.
Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

SEALS - BOND TEST FIXTURE AND PROCEDURE

1990-10-01
HISTORICAL
J1900_199010
Bond, as it relates to elastomeric seals, is defined as "The adhesion, established by vulcanization, between two cured elastomeric surfaces, or between one cured elastomeric surface and one nonelastomeric surface".1 Vulcanization refers in this case to chemical bonding. Good bond is essential to the function of elastomeric radial lip seals and other precision. bonded parts. This SAE Recommended Practice describes a universal bond test fixture developed by the RMA that can be mounted to a conventional tensile test machine. This will allow a quantitative evaluation of bond rather than a merely qualitative one.
X