Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

2018-04-03
2018-01-0800
Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
Technical Paper

A Comprehensive Study of Hole Punching Force for AHSS

2018-04-03
2018-01-0802
The elevated strength of advanced high strength steels (AHSS) leads to enormous challenges for the sheet metal processing, one of which is hole punching operation. The total tonnage must be estimated at each trimming stage to ensure successful cutting and protect the press machine. This paper presents the effects of hole punch configurations on the punching force with the consideration of punch shape, cutting clearance and material grade. The hole punching experiments were performed with DP590, DP980, DP1180 and one mild steel as a reference. The punching force coefficient is defined and presents a negative correlation with the material strength based on the experimental data. Surface quality was examined to analyze the damage accumulation during the punching process. The cutting mechanisms with various punch shapes were revealed through an extensive finite element simulation study.
Technical Paper

Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel

2018-04-03
2018-01-0806
Twist spring-back would interfere with stamping or assembling procedures for advanced high strength steel. A “homeopathic” resolution for controlling the twist spring-back is proposed using unbalanced post-stretching configuration. Finite element forming simulation is applied to evaluate and compare the performance for each set of unbalanced post-stretching setup. The post-stretching is effectuated by stake bead application. The beads are separated into multiple independent segments, the height and radii of which can be adjusted individually and asymmetrically. Simulation results indicate that the twist spring-back can be effectively controlled by reducing the post-stretching proximate to the asymmetric part area. Its mechanism is qualitatively revealed by stress analyses, that an additional but acceptable cross-sectional spring-back re-balances the sprung asymmetrical geometry to counter the twist effect.
Technical Paper

Effect of Pre-Strain on Edge Cracking Limit for Advanced High-Strength Steel Using Digital Image Correlation

2017-03-28
2017-01-0394
Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Evaluation of Metal Gainers for Advanced High Strength Steel Flanging

2014-04-01
2014-01-0985
Forming a metal gainer is a common technique used to gather material in a high stretch region along an edge in preparation for a subsequent flanging operation. This technique has proven to be successful for mild steels, but needs to be evaluated for the applicability to advanced high strength steels (AHSS). The Auto/Steel Partnership High Strength Stamping Team launched a project for this study. Experimental trials were conducted on gainer forming, trimming and flanging. Twelve (12) AHSS have been tested with tensile strengths ranging from 460 to 1240 MPa. Edge stretch limits for flanging have been evaluated and compared to flanging without gainers. Different trimming and flanging approaches have also been tried. The results show that metal gainers are not advantageous for flanging of higher strength AHSS.
Technical Paper

Forming Limit Measurement Using a Multi-Sensor Digital Image Correlation System

2013-04-08
2013-01-1423
A multi-sensor Digital Image Correlation (DIC) system is employed to measure the deformation of metal specimens during tensile tests. The multi-sensor DIC system is capable of providing high quality contour and deformation data of a 3D object. Methodology and advantages of the multi-sensor DIC system is introduced. Tests have been done on steel and aluminum specimens to prove the performance of the system. With the help of the multi-sensor DIC system, we proposed our approaches to determine the forming limit based on shape change around the necking area instead of calculate the FLD based on the in-plane strains. With the employed system, all measurements are done post-deformation, no testing controlling mechanism, such as load force control or touching control, is required. The extracted data is analyzed and the result shows a possibility that we may be able to improve current technique for Forming Limit Diagram (FLD) measurement.
Journal Article

Full Field Strain Measurement of Punch-stretch Tests Using Digital Image Correlation

2012-04-16
2012-01-0183
Punch-stretch tests were conducted on Advanced High Strength Steel (AHSS) specimens. A special stretching mechanism with two embedded high resolution digital cameras had been designed and used in punch-stretch tests. The deforming processes were recorded by the cameras and the full-field strain distribution for each specimen was evaluated using Digital Image Correlation (DIC) technique, a full-field, non-contact, high accuracy optical and computational technique for contour, displacement and strain measurement. Data of Strain path, necking and other strain behavior were extracted using DIC. Different data analysis methods were tried to achieve useful information for predicting the failure. The data set could be used for researches on the effect of the strain path on the forming limit.
Journal Article

A Study of Anisotropy and Post-Necking Local Fracture Strain of Advanced High Strength Steel with the Utilization of Digital Image Correlation

2011-04-12
2011-01-0992
The automotive industry has a strong need for lightweight materials capable of withstanding large mechanical loads. Advanced high-strength steels (AHSS), which have high tensile strength and formability, show great promise for automotive applications, yet if they are to be more widely used, it's important to understand their deformation behavior; this is particularly important for the development of forming limit diagrams (FLD) used in stamping processes. The goal of the present study was to determine the extent to which anisotropy introduced by the rolling direction affects the local fracture strain. Three grades of dual-phase AHSS and one high-strength low-alloy (HSL A) 50ksi grade steel were tested under plane strain conditions. Half of the samples were loaded along their rolling direction and the other half transverse to it. In order to achieve plane strain conditions, non-standard dogbone samples were loaded on a wide-grip MTS tensile test machine.
Technical Paper

Measurement of Strain Distribution for Hole Expansion with Digital Image Correlation (DIC) System

2011-04-12
2011-01-0993
Advanced high strength steels (AHSS) are increasingly used in automotive industry. A major issue for AHSS stamping is edge cracking. This failure mode is difficult to predict by conventional forming limit curve (FLC). The material edge stretchability is mainly evaluated using the hole expansion test. In this study, digital Image Correlation (DIC) is applied for strain measurement. DIC is a non-contact, full field, high accuracy and direct measurement technique that provides more detailed information for the evolution of strains on the sheet surface. Tests were conducted for five AHSS and nine cases. This paper will explain in detail the DIC technique and its results.
Technical Paper

Whole Field Bonded Steel Tensile Test Using Digital Image Correlation System

2010-04-12
2010-01-0960
Adhesive bonding has many applications in the automotive industry. The single-lapped bonded joint is the most typically used among various bonding types. This paper presents experimental research for determining the strain field of the single-lapped joint under tensile loading. The materials for the joint are epoxy-based structural adhesive and low-carbon electrolytic zinc steel plate. In the study, a DIC (digital image correlation) system was adopted to measure the strain distribution of the bonded joint during a tensile test. The bonded steel coupons in the tensile test were prepared according to the ASTM standard. During the measurement, images of the coupon joint were taken before and after the deformation process. Then the DIC system measured the strain of bonded joint by comparing two consecutive images. The measured data from the DIC was compared to data taken simultaneously from a traditional extensometer.
Technical Paper

A Practical Failure Limit for Sheared Edge Stretching of Automotive Body Panels

2010-04-12
2010-01-0986
Edge cracking is one of the major formability concerns in advanced high strength steel (AHSS) stamping. Although finite element analysis (FEA) together with the Forming Limit Diagram has been widely used, it has not effectively predicted edge cracking. Primary problems in developing a methodology to insure that parts are safe from edge cracking are the lack of an effective failure criterion and a simple and accurate measurement method that is not only usable in both die tryout and production but also can be verified by finite element analysis. The intent of this study is to develop a methodology to ensure that parts with internal cutouts, such as a body side panel can be produced without edge cracking. During tryout and production, edge cracking has traditionally been detected by visual examination, but this approach is not adequate for ensuring freedom from edge cracking.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

An Experimental Study of Springback for Dual Phase Steel and Conventional High Strength Steel

2001-10-16
2001-01-3106
An experimental study of springback was conducted for a hat channel section with varying cross sections and controlled gap between punch and die. The channel section was formed in a single step forming process with upper pressure pad. DP590 steel was compared to a group of high strength steels (HSS), e.g. HSLA270, 340 and 420. In addition, sidewall curl phenomenon was studied utilizing bending under tension test. This paper describes methodology of experiment and discusses springback related results. It also offers recommendations that can be applied to die-punch gap control or material substitution situations. The results of this investigation can be used to verify accuracy of springback predictions in finite element analysis (FEA).
X