Refine Your Search

Search Results

Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

A Study of Autoignition Behavior and Knock Intensity in a SI Engine under Different Engine Speed by Using In-Cylinder Visualization

2017-11-05
2017-32-0050
Internal combustion engines have been required to achieve even higher efficiency in recent years in order to address environmental concerns. However, knock induced by abnormal combustion in spark-ignition engines has impeded efforts to attain higher efficiency. Knock characteristics during abnormal combustion were investigated in this study by in-cylinder visualization and spectroscopic measurements using a four-stroke air-cooled single-cylinder engine. The results revealed that knock intensity and the manner in which the autoignited flame propagated in the end gas differed depending on the engine speed.
Technical Paper

A Study of Ignition and Combustion in an SI Engine Using Multistage Pulse Discharge Ignition

2017-11-05
2017-32-0069
Lean-burn technology is regarded as one effective way to increase the efficiency of internal combustion engines. However, stable ignition is difficult to ensure with a lean mixture. It is expected that this issue can be resolved by improving ignition performance as a result of increasing the amount of energy discharged into the gaseous mixture at the time of ignition. There are limits, however, to how high ignition energy can be increased from the standpoints of spark plug durability, energy consumption and other considerations. Therefore, the authors have focused on a multistage pulse discharge (MSPD) ignition system that performs low-energy ignition multiple times. In this study, a comparison was made of ignition performance between MSPD ignition and conventional spark ignition (SI). A high-speed camera was used to obtain visualized images of ignition in the cylinder and a pressure sensor was used to measure pressure histories in the combustion chamber.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study of Knocking in a Lean Mixture Using an Optically Accessible Engine

2016-11-08
2016-32-0002
Improving the thermal efficiency of internal combustion engines requires operation under a lean combustion regime and a higher compression ratio, which means that the causes of autoignition and pressure oscillations in this operating region must be made clear. However, there is limited knowledge of autoignition behavior under lean combustion conditions. Therefore, in this study, experiments were conducted in which the ignition timing and intake air temperature (scavenging temperature) of a 2-stroke optically accessible test engine were varied to induce autoignition under a variety of conditions. The test fuel used was a primary reference fuel with an octane rating of 90. The results revealed that advancing the ignition timing under lean combustion conditions also advanced the autoignition timing, though strong pressure oscillations on the other hand tended not to occur.
Technical Paper

Influence of Calcium-Based Additives with Different Properties on Abnormal Combustion in an SI Engine

2016-11-08
2016-32-0007
Technologies for further improving vehicle fuel economy have attracted widespread attention in recent years. However, one problem with some approaches is the occurrence of abnormal combustion such as low-speed pre-ignition (LSPI) that occurs under low-speed, high-load operating conditions. One proposed cause of LSPI is that oil droplets diluted by the fuel enter the combustion chamber and become a source of ignition. Another proposed cause is that deposits peel off and become a source of ignition. A four-stroke air-cooled single-cylinder engine was used in this study to investigate the influence of Ca-based additives having different properties on abnormal combustion by means of in-cylinder visualization and absorption spectroscopic measurements. The results obtained for neutral and basic Ca-based additives revealed that the former had an effect on advancing the time of autoignition.
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
Journal Article

Abnormal Combustion Induced by Combustion Chamber Deposits Derived from Engine Oil Additives in a Spark-Ignited Engine

2014-11-11
2014-32-0091
Although metallic compounds are widely known to affect combustion in internal combustion engines, the potential of metallic additives in engine oils to initiate abnormal combustion has been unclear. In this study, we investigated the influence of combustion chamber deposits derived from engine oil additives on combustion in a spark-ignited engine. We used a single-cylinder four-stroke engine, and measured several combustion characteristics (e.g., cylinder pressure, in-cylinder ultraviolet absorbance in the end-gas region, and visualized flame propagation) to evaluate combustion anomalies. To clarify the effects of individual additive components, we formed combustion products of individual additives in a combustion chamber prior to measuring combustion characteristics. We tested three types of metallic additives: a calcium-based detergent, a zinc-based antiwear agent, and a molybdenum-based friction modifier.
Journal Article

A Study on the Effect of a Calcium-Based Engine Oil Additive on Abnormal SI Engine Combustion

2014-11-11
2014-32-0092
Supercharged direct-injection engines are known to have a tendency toward abnormal combustion such as spontaneous low-speed pre-ignition and strong knock because they operate under low-speed, high-load conditions conducive to the occurrence of irregular combustion. It has been hypothesized that one cause of such abnormal combustion is the intrusion of engine oil droplets into the combustion chamber where they become a source of ignition. It has also been reported that varying the composition of engine oil additives can change susceptibility to abnormal combustion. However, the mechanisms involved are not well understood, and it is not clear how the individual components of engine oil additives affect autoignition. In this study, abnormal combustion experiments were conducted to investigate the effect on autoignition of a calcium-based additive that is typically mixed into engine oil to act as a detergent.
Journal Article

A Study on the Effect of Zn- and Mo-Based Engine Oil Additives on Abnormal SI Engine Combustion using In-Cylinder Combustion Visualization

2014-11-11
2014-32-0096
Spontaneous low-speed pre-ignition, strong knock and other abnormal combustion events that occur in supercharged direct-injection engines are viewed as serious issues. The effects of the engine oil and the components of engine oil additives have been pointed out as one cause of such abnormal combustion. However, the mechanisms involved have yet to be elucidated, and it is unclear how the individual components of engine oil additives influence autoignition. This study investigated the effect on autoignition of boundary lubricant additives that are mixed into the engine oil for the purpose of forming a lubricant film on metal surfaces. A high-speed camera was used to photograph and visualize combustion through an optical access window provided in the combustion chamber of the four-stroke naturally aspirated side-valve test engine. Spectroscopic measurements were also made simultaneously to investigate the characteristics of abnormal combustion in detail.
Journal Article

A Study of HCCI Knocking Accompanied by Pressure Oscillations Based on Visualization of the Entire Bore Area

2014-10-13
2014-01-2664
Knocking combustion experiments were conducted in this study using a test engine that allowed the entire bore area to be visualized. The purpose was to make clear the detailed characteristics of knocking combustion that occurs accompanied by cylinder pressure oscillations when a Homogeneous Charge Compression Ignition (HCCI) engine is operated at high loads. Knocking combustion was intentionally induced by varying the main combustion period and engine speed. Under such conditions, knocking in HCCI combustion was investigated in detail on the basis of cylinder pressure analysis, high-speed photography of the combustion flame and spectroscopic measurement of flame light emissions. The results revealed that locally occurring autoignition took place rapidly at multiple locations in the cylinder when knocking combustion occurred. In that process, the unburned end gas subsequently underwent even more rapid autoignition, giving rise to cylinder pressure oscillations.
Journal Article

Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine

2013-10-15
2013-32-9166
Combustion experiments were conducted with an optically accessible engine that allowed the entire bore area to be visualized for the purpose of making clear the characteristics that induce extremely rapid HCCI combustion and knocking accompanied by cylinder pressure oscillations. The HCCI combustion regime was investigated in detail by high-speed in-cylinder visualization of autoignition and combustion and emission spectroscopic measurements. The results revealed that increasing the equivalence ratio and advancing the ignition timing caused the maximum pressure rise rate and knocking intensity to increase. In moderate HCCI combustion, the autoignited flame was initially dispersed temporally and spatially in the cylinder and then gradually spread throughout the entire cylinder.
Technical Paper

A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization

2013-10-15
2013-32-9030
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
Technical Paper

Analysis of the Characteristics of HCCI Combustion and ATAC Combustion Using the Same Test Engine

2004-09-27
2004-32-0097
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted considerable interest in recent years as a new combustion concept for internal combustion engines. On the other hand, two combustion concepts proposed for two-cycle spark-ignition (SI) engines are Active Thermo-Atmosphere Combustion (ATAC) and Activated Radical (AR) combustion. The authors undertook this study to examine the similarities and differences between HCCI combustion and ATAC (AR) combustion. Differences in the low-temperature oxidation reaction behavior between these two combustion processes were made clear using one test engine.
Technical Paper

A Study of Knocking Using Ion Current and Light Emission

2003-09-16
2003-32-0038
This study attempted to elucidate combustion conditions in a progression from normal combustion to knocking by analyzing the ion current and light emission intensity that occurred during this transition. With the aim of understanding the combustion states involved, the ion current was measured at two positions in the combustion chamber. Light emission spectroscopy was applied to examine preflame reactions that are observed prior to autoignition in the combustion process of hydrocarbon fuels. The results obtained by analyzing the experimental data made clear the relationship between the ion current and light emission during the transition from normal combustion to knocking operation.
Technical Paper

Light Emission Behavior of Radicals during Preflame Reactions under Knocking Operation

2002-10-29
2002-32-1775
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition. Light emission intensity was measured at wavelengths of 306.4 nm (characteristic spectrum of OH), 329.8 nm (HCO), 395.2 nm (HCHO). A four-cycle, air-cooled, single-cylinder gasoline engine with a side valve arrangement was used as the test engine. Light emission behavior was simultaneously observed at two positions (the end zone and the center zone) in the combustion chamber. The test fuel used was n-heptane (0 RON). The test engine was operated at three speed levels (1400, 1800 and 2200 rpm). As a result, preflame reactions were observed. It was also observed that the tendencies seen for the preflame reaction interval varied depending on the engine speed.
X