Refine Your Search

Topic

Search Results

Standard

Identification and Packaging Elastomeric Products

2024-03-04
CURRENT
AMS2810J
This specification provides requirements for the identification and packaging of sheet, strip, extrusions, and molded parts made of natural rubber, synthetic rubber, reclaimed rubber, and combinations of the above with other materials such as asbestos, cork, and fabrics. AMS2817 covers preferred requirements for identification and packaging of preformed packings.
Standard

Elastomer: Chloroprene Rubber (CR) Weather Resistant 35 - 45

2022-06-13
CURRENT
AMS3240L
This specification covers a chloroprene rubber (CR) that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes such as window channels, bumper pads, chafing strips, etc. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the equivalent AMS7XXX specification.
Standard

Packaging and Identification of Molded Elastomeric Seals and Sealing Components

2022-05-20
CURRENT
AMS2817G
This specification covers procedures which will provide protection of elastomeric seals and seal assemblies such as O-rings, cap seal assemblies, and other designs from contamination by foreign materials and handling / transportation / storage damage prior to installation and ensure positive identification by part number of each piece until it is installed.
Standard

Sponge, Chloroprene (CR) Rubber, Soft

2022-03-01
CURRENT
AMS3197N
This specification covers a chloroprene (CR) rubber sponge in the form of sheet, strip, molded shapes, or other forms, as ordered.
Standard

Rubber: Fluorocarbon Elastomer (FKM) Aircraft Engine Oil, Fuel and Hydraulic Fluid Resistant 70 to 80 Shore Type A Hardness Low Temperature Sealing Tg -47 °F (-43.9 °C) for Elastomeric Seals in Aircraft Engine, Fuel and Hydraulic Systems

2021-10-06
CURRENT
AMS7410
This specification covers high temperature, compression set, and fluid resistant fluorocarbon (FKM) elastomer in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
Standard

Rubber, Ethylene-Propylene, Hydrazine Resistant

2021-07-21
WIP
AMSR83412B
This specification covers three types of rubber having good resistance to high and low temperature and hydrazine type propellants, but poor resistance to hydrocarbon oils or solvents. Hydrazines are hazardous chemicals. See Dangerous Properties of Industrial Materials; by N. Irving Sax.
Standard

Designing with Elastomers for use at Low Temperatures, Near or Below Glass Transition

2020-11-12
WIP
AIR1387E

To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures.

There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25).

The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience.

Standard

Rubber: Flourocarbon (FKM), High Temperature/Fluid Resistant, Low Compression Set/ 85 to 95 Hardness, For Seals in Fuel Systems and Specific Engine Oil Systems

2018-10-09
WIP
AMS7259F
This specification covers a fluorocarbon (FKM) rubber in the form of O-rings, O-ring cord, compression seals, and molded-in-place gaskets for aeronautical and aerospace applications. These products have been used typically as sealing rings, compression seals, O-ring cord, and molded-in-place gaskets in contact with air and a wide variety of fuels, lubricants, and specific hydraulic fluids but usage is not limited to such applications. Each application should be considered individually. This class of fluoroelastomers is not recommended for use in high temperature stabilized, “HTS”, engine oils. Each “HTS” oil should be evaluated separately. This fluorocarbon rubber has a typical service temperature range of -20 to +400 °F (-29 to +204 °C) in air.
X