Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Numerical Simulation for the Hybrid Single Shot (HSS) Process Used to Manufacture Thermoset-Thermoplastic Components

2021-04-06
2021-01-0350
Multi-material design is one of the trending methods for automakers to achieve lightweighting cost-efficiently and meet stringent regulations and fuel efficiency concerns. Motivated by this trend, the hybrid single-shot (HSS) process has been recently introduced to manufacture thermoset-thermoplastic composites in one single integrated operation. Although this integration is beneficial in terms of reducing the cycle time, production cost, and manufacturing limitations associated with such hybrid structures, it increases the process complexity due to the simultaneous filling, forming, curing, and bonding actions occurring during the process. To overcome this complexity and have a better understanding on the interaction of these physical events, a quick yet accurate simulation of the HSS process based on an experimentally calibrated numerical approach is presented here to elucidate the effect of different process settings on the final geometry of the hybrid part.
Journal Article

Designing a Production-Ready Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Door

2021-04-06
2021-01-0365
Vehicle lightweighting has been a constant theme of research at numerous Original Equipment Manufacturers (OEM’s) as it provides one of the best opportunities for improving fuel efficiency. In this regard, the Department of Energy (DOE) Vehicle Technology Office set a challenge to lightweight a fully assembled driver’s side front door by at least 42.5% with the cost constraint of a maximum $5 increase for every pound saved. A baseline door of an OEM’s 2014 mid-size SUV was selected, and an integrated design, analysis, and optimization approach was implemented to meet this goal. The ultra-lightweight door design had to meet or exceed the fit & function and mechanical performance (static and dynamic) of the baseline door while being suitable for mass production. The design strategy involved parts consolidation, and multi-material distribution to enable mass reduction without compromising the fit and functional requirements.
Technical Paper

Understanding Resilience to Contamination in the Joint Interface for a Resistive Welded Joint in Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1273
The continuous evolution to improve both the efficiency and lower the emissions of passenger vehicles now means that the need for light weighting is indisputable. New material systems such as fiber reinforced thermoplastic composites offer just such a very high lightweighting potential. Although most of these parts are currently joined using adhesives, resistive welding provides a promising alternative. Indeed, the faster cycle times, recyclability, design flexibility and resilience to contamination indicate the superiority of resistive welding over adhesive bonding. Although resilience to contamination is widely accepted, it is yet to be validated as very little scientific data is available concerning these characteristics. To ensure the scalability of these joints in automotive applications, they should exhibit tolerances to specific contaminations that are present in the body shop.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Journal Article

IIoT-Enabled Production System for Composite Intensive Vehicle Manufacturing

2017-03-28
2017-01-0290
The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
Journal Article

Design and Development of a Composite A-Pillar to Reduce Obstruction Angle in Passenger Cars

2017-03-28
2017-01-0501
In modern passenger vehicles, A-pillar plays an important role in its passive safety by minimizing the deformation of passenger compartment during the crash. To meet various crash requirements, as well as sometimes due to demand of vehicle styling, A-pillar cross section of modern vehicles is generally wider. This wider cross section acts as an increased obstruction to the field of vision of the driver. It is considered detrimental for the safety of road users. The current work proposes an innovative design solution to reduce the obstruction angle due to an A-pillar. It also addresses the weight reduction objective. This is done by utilizing the noble properties of Carbon Fiber Reinforced Polymers (CFRP). Carbon Fiber Reinforced Polymers (CFRP) offer flexibility for complex design. Due to high specific strength and stiffness, CFRP's are suitable candidate for design considerations presented in this study.
Journal Article

Conceptual Development of a Multi-Material Composite Structure for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1334
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
Book

The Use of Nano Composites in Automotive Applications

2015-12-18
With their high specific strength and stiffness, composites have the potential to significantly lower the vehicle weight, which can have a dramatic effect on improving fuel efficiency and reducing greenhouse gas emissions. For the past decade or so, composites have been experiencing several transitions, including the transition from micro-scale reinforcement fillers to nano-scale reinforcement fillers, resulting in the nanocomposite. The effectiveness of the nano-sized fillers in composites can be explained by one of their unique geometric properties: the length-to-thickness aspect ratio. Therefore, nano-sized fillers have exceptionally higher reinforcing efficiency than the conventional, large fillers. The effectiveness of the nano-sized fillers in composites is also due to their large surface area and surface energy.
Book

Composites in Automotive Applications set

2015-09-10
This set consists of three books, Design of Automotive Composites, CAE Design and Failure Analysis of Automotive Composites, and Biocomposites in Automotive Applications all developed by Dr. Charles Lu and Dr. Srikanth Pilla. Design of Automotive Composites reports successful designs of automotive composites occurred recently in this arena, CAE Design and Failure Analysis of Automotive Composites focuses on the latest use of CAE (Computer-Aided Engineering) methods in design and failure analysis of composite materials and structures, and Biocomposites in Automotive Applications, focuses on processing and characterization of biocomposites, their application in the automotive industry and new perspectives on automotive sustainability. Together, they are a focused collection providing the reader with must-read technical papers, hand-picked by the editors, supporting the growing importance of the use of composites in the ground vehicle industry. Dr. Charles Lu is H.E.
Book

Biocomposites in Automotive Applications

2015-08-13
The automotive sector has taken a keen interest in lightweighting as new required performance standards for fuel economy come into place. This strategy includes parts consolidation, design optimization, and material substitution, with sustainable polymers playing a major role in reducing a vehicle’s weight. Sustainable polymers are largely biodegradable, biocompatible, and sourced from renewable plant and agricultural stocks. A facile way to enhance their properties, so they can indeed replace the ones made from fossil fuels, is by reinforcing them with fibers to make composites. Natural fibers are gaining more acceptance in the industry due to their renewable nature, low cost, low density, low energy consumption, high specific strength and stiffness, CO2 sequestration potential, biodegradability, and less wear imposed on machinery. Biocomposites then become a very feasible way to help address the fuel consumption challenge ahead of us.
Book

CAE Design and Failure Analysis of Automotive Composites

2014-12-03
Composites are now extensively used in applications where outstanding mechanical properties are necessary in combination with weight savings, due to their highly tunable microstructure and mechanical properties. These properties present great potential for part integration, which results in lower manufacturing costs and faster time to market. Composites also have a high level of styling flexibility in terms of deep drawn panel, which goes beyond what can be achieved with metal stampings. The so-called multifunctional or smart composites provide significant benefits to the vehicles as compared to the traditional materials that only have monotonic properties.
Book

Design of Automotive Composites

2014-08-04
Design of Automotive Composites reports that successful designs of automotive composites occurred recently in this arena. The chapters consist of eleven technical papers selected from the Automotive Composites and other relevant sessions that the editors have been organizing for the SAE International World Congress over the past five years. The book is divided into four sections: o Body Structures o Powertrain Components o Suspension Components o Electrical and Alternative Vehicle Components The composite design examples presented in Design of Automotive Composites come from the major OEMs and top-tier suppliers and are most relevant to the automotive materials challenges currently faced by the industry. Many of the innovative ideas have already been implemented on existing or new model vehicles, although a great deal of innovation is still in the works.
Technical Paper

Processing and Characterization of Solid and Microcellular PHBV/Coir Fiber Composites

2010-04-12
2010-01-0422
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/coir fiber composites were prepared via both conventional and microcellular injection-molding processes. The surface of the hydrophilic coir fiber was modified by alkali and silane-treatment to improve its adhesion with PHBV. The morphology, thermal, and mechanical properties were investigated. The addition of coir fiber (treated and untreated) reduced cell size and increased cell density. Further decrease in cell size and increase in cell density were observed for treated fibers compared with PHBV/untreated fiber composites. Mechanical properties such as specific toughness and strain-at-break improved for both solid and microcellular specimens with the addition of coir fibers (both treated and untreated); however, the specific modulus remained essentially the same statistically while the specific strength decreased slightly.
X