Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Recommendations for Clothing Systems for Advanced Missions

2006-07-17
2006-01-2248
Clothing can constitute a major logistical problem for advanced missions. Current and historical clothing systems for space missions have been assessed, as has the viability of using a washing machine to clean (recycle) clothing. Modern fabrics can reduce the mass and increase the functionality of clothing, including reducing the risk of fire, for all missions. The increased cost of acquisition of even high tech commercial off the shelf (COTS) items is trivial compared to the cost of shipping the clothing and disposing of it as trash. Washing can be cost effective when water is recycled efficiently, provided the mission is long enough. The breakeven time for clothes-washing depends on the specifics of the mission, particularly the mass equivalencies of infrastructure, but is of the order of weeks rather than years.
Technical Paper

Comparison of Waste Systems

2004-07-19
2004-01-2581
A summary of waste processes and waste process data is presented in the context of mission equivalent system mass. Storage, size reduction, drying, aerobic and anaerobic biodegradation, chemical oxidation, pyrolysis, and post processing are evaluated in the context of probable long-duration missions beyond LEO, and the probable quantities and types of wastes and of the other on-board systems. An assessment of the waste systems described in the ALS Reference Missions Document is presented, and rationale for some changes to these systems is provided.
Technical Paper

Concepts for Food Processing for Lunar and Planetary Stations

1996-07-01
961415
Most work on food production for long-duration missions has focused either on biomass production or nutritional modeling. Food processing, while not a basic life support technology, has the potential to significantly affect both life support system performance and the crew's quality of life. Food processing includes the following tasks: Separation of edible biomass (food) from inedible biomass Conversion of inedible biomass into foodstuffs (optional) Processing of foodstuffs into convenience ingredients or storable forms Storage management for locally produced foods and foods supplied from Earth Cooking and serving of fresh and stored foods Management of wastes and leftovers Cleaning and maintenance of equipment Questions to be answered in design of a food processing system include: What processing and labor-saving equipment is required, and with what capacity? How must earth-based processing technology be adapted for hypogravity?
Technical Paper

Value of Fermented Foods for Lunar and Planetary Stations

1996-07-01
961416
Three significant problems with food supply in bioregenerative lifesupport systems are addressable through use of fermented foods. The quantity of inedible and marginally edible biomass can be reduced; the hedonic quality of the diet can be enhanced; and food storage constraints can be relaxed due to the superior keeping qualities of fermented products. The authors have assessed potentially available materials and fermentation processes used worldwide, to identify promising food fermentations for use in lunar and planetary stations. Conversion of inedible biomass into acceptable food may include hydrolysis of waste biomass to produce sweeteners and acidulants; fermentation of physically fractionated biomass such as leaf protein isolates into acceptable foods; mushroom cultivation on agricultural residues; and conversion of volatile fatty acids produced during waste treatment into edible microbial biomass.
X