Refine Your Search

Topic

Author

Search Results

Technical Paper

High Pressure Hydrogen Injector Sizing Using 1D/3D CFD Modeling for a Compression Ignition Single Cylinder Research Engine

2024-04-09
2024-01-2615
With the aim of decarbonizing the vehicles fleet, the use of hydrogen is promising solution. Hydrogen is an energy carrier, carbon-free, with high calorific value and with no CO2 and HC emissions burning in ICE. Hydrogen use in spark ignition engines has already been extensively investigated and optimized. On the other hand, its use in compression ignition engines has been little developed and, therefore, there is a lack of information regarding the combustion in ultra-lean conditions, typical of diesel engines. Several applications employ dual fuel combustion for the easy management of the PFI injection system to be applied in addition to the DI Common Rail system. However, this mode suffers from several problems regarding the management of the maximum flow rate of hydrogen into the intake. In particular, to avoid throwing hydrogen into the exhaust, injection must be started after the valve crossing.
Technical Paper

High-Pressure Hydrogen Jet Behavior: Flow Rate and Inner Morphology Investigation

2024-04-09
2024-01-2617
The combustion of fossil-based fuels in ICEs, resulting in a huge amount of greenhouse gases (GHG) and leading to an immense global temperature rise, are the root causes of the more stringent emission legislations to safeguard health and that encourage further investigations on alternative carbon-neutral fuels. In this respect, the hydrogen has been considered as one of the potential clean fuels because of its zero-carbon nature. The current development of hydrogen-based ICEs focuses on the direct injection (DI) strategy as it allows better engine efficiency than the port fuel injection one. The behavior of the fuel jet is a fundamental aspect of the in-cylinder air-fuel mixing ratio, affecting the combustion process, the engine performances, and the pollutants emissions. In the present study, comprehensive investigations on the hydrogen jet behavior, generated by a Compressed Hydrogen Gas (CHG) injector under different operative conditions, were performed.
Technical Paper

Investigation of Liquid Lignin-Methanol Blends under Realistic Two-Stroke Marine Engines Conditions

2023-08-28
2023-24-0085
With a view to reducing the environmental impact of fossil fuels, advanced lignin-based biofuels could provide a valuable contribute, since lignin is the most abundant biopolymer on earth after cellulose. However, its thermophysical properties would hamper its use as a pure fuel. In this work we investigated the combustion behavior of sprays of a liquid lignin-methanol blend and evaluated its potential as a low-carbon marine fuel for large two-stroke engines. To this end, an experimental campaign was conducted in an optically accessible combustion chamber whose main dimensions correspond to those of a single cylinder for large two-stroke engines. The chamber is provided with optical accesses for optical diagnostics of the combustion process. The combustion of the mixture was ignited using a diesel pilot jet as the ignition source. Two marine injectors are mounted in the chamber, namely “main” and “pilot” injectors.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Journal Article

Effects of Ultra-High Injection Pressure and Flash Boiling Onset on GDI Sprays Morphology

2023-04-11
2023-01-0299
Ultra-high injection pressures, as well as flash-boiling occurrence, are among the most important research fields recently explored for improving Gasoline Direct Injection (GDI) engine performance. Both of them play a key role in the enhancement of the air/fuel mixing process, in the reduction of tailpipe pollutant emissions, as well as in the investigation of new combustion concepts. Injector manufacturers are even more producing devices with ultra-high injection pressures capable of working with flashing sprays. Flash-boiling of fuel sprays occurs when a super-heated fuel is discharged into an environment whose pressure is lower than the saturation pressure of the fuel and can dramatically alter spray formation due to complex two-phase flow effects and rapid droplet vaporization. In GDI engines, typically, it occurs during the injection process when high fuel temperatures make its saturation pressures higher than the in-cylinder one.
Technical Paper

Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver

2021-09-05
2021-24-0057
Among the others, natural gas (NG) is regarded as a potential solution to enhance the environmental performance of internal combustion engines. Low carbon-to-hydrogen ratio, worldwide relatively homogeneous distribution and reduced price are the reason as, lately, many researchers efforts have been put in this area. In particular, this work focuses on the characterization of the injection process inside a constant volume chamber (CVC), which could provide a contribution to the development of direct injection technologies for a gaseous fuel. Direct injection of a gaseous fuel involves the presence of under-expanded jets whose knowledge is fundamental to achieve the proper mixture formation prior to the combustion ignition. For this reason, a density based solver was developed within the OpenFOAM library in order to simulate the jet issued from an injector suitable for direct injection of methane.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
Technical Paper

CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology

2020-09-27
2020-24-0010
The numerical reconstruction of the liquid jet generated by a multi-hole injector, operating in flash-boiling conditions, has been developed by means of a Eulerian- Lagrangian CFD code and validated thanks to experimental data collected with schlieren and Mie scattering imaging techniques. The model has been tested with different injection parameters in order to recreate various possible engine thermodynamic conditions. The work carried out is framed in the growing interest present around the gasoline direct-injection systems (GDI). Such technology has been recognized as an effective way to achieve better engine performance and reduced pollutant emissions. High-pressure injectors operating in flashing conditions are demonstrating many advantages in the applications for GDI engines providing a better fuel atomization, a better mixing with the air, a consequent more efficient combustion and, finally, reduced tailpipe emissions.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines

2020-09-15
2020-01-2124
Compressed Natural Gas (CNG) is regarded as a promising fuel for spark-ignited (SI) internal combustion engines (ICE) to improve engine thermal efficiency and reduce both carbon dioxide and pollutant emissions. Significant advantages of CNG are higher-octane number, higher hydrogen to carbon ratio, and lower energy-specific CO2 emissions compared with gasoline. More, it can be produced in renewable ways, and is more widespread and cheaper than conventional liquid fossil fuels. In this regard, the direct injection of CNG engines can be considered a promising technology for highly efficient and low-emission future engines. This work reports an experimental and numerical characterization of high-pressure methane jets from a multi-hole injector for direct injection engines.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

Effects of Ultra-High Injection Pressures up to 100 MPa on Gasoline Spray Morphology

2020-04-14
2020-01-0320
Very high pressures for injecting gasoline in internal combustion (i.c.) engines are recently explored for improving the air/fuel mixing process in order to control unburned hydrocarbons (UBHC) and particulate matter emissions such as for investigating new combustion concepts. The challenge remains the improvement of the spray parameters in terms of atomization, smaller droplets and their spread in the combustion chamber in order to enhance the combustion efficiency. In this framework, the raise of the injection pressure plays a key role in GDI engines for the trade-off of CO2 vs other pollutant emissions. This study aims contributing to the knowledge of the physical phenomena and mechanisms occurring when fuel is injected at ultra-high pressures for mapping and controlling the mixture formation.
Technical Paper

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

2019-10-07
2019-24-0233
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed. In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered.
Technical Paper

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline

2019-10-07
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in a commercial small Spark Ignition (SI) engine fueled with gasoline and equipped with a proper designed passive prechamber. It was analyzed the effects of the prechamber on engine performance, Indicated Mean Effective Pressure, Heat Release Rate and Fuel Consumption were used. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Four different engine speeds were investigated, namely 2000, 3000, 4000 and 5000 rpm.
Technical Paper

Experimental Characterization of Methane Direct Injection from an Outward-Opening Poppet-Valve Injector

2019-09-09
2019-24-0135
The in-cylinder direct injection of natural gas can be a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, both experimentally and by numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility and the small length scale. In this work, the under-expanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by high-speed schlieren imaging. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 18. The gaseous jet has been characterized in terms of its macroscale parameters. A scaling-law analysis of the results has been performed. The gas-dynamic structure at the nozzle exit has been also investigated.
Technical Paper

Experimental and Numerical Analysis of a Pre-Chamber Turbulent Jet Ignition Combustion System

2019-09-09
2019-24-0018
Recent needs of reducing pollutant emissions of internal combustion engines have pushed the development of non-conventional ignition systems. One of the most promising techniques appears to be the so-called pre-chamber turbulent jet ignition combustion system in which a jet of hot combusting gases is employed to initiate the combustion in the main chamber. In the present study, the combustion process related to this ignition system has been experimentally investigated in an optically accessible single cylinder spark-ignition engine. The pre-chamber was composed of a gas injector and a spark-plug, embedded in a small annular chamber connected to the cylinder through a four-hole pipette. A small amount of methane is injected within the pre-chamber for initiating the combustion. The flame reaches the combustion chamber through four narrow orifices and rapidly consumes a homogeneous mixture of port injected methane and air.
Technical Paper

Experimental Investigation of a Fueled Prechamber Combustion in an Optical Small Displacement SI Methane Engine

2019-09-09
2019-24-0170
The constant aim of the automotive industry is the further improvement of engine efficiency and the simultaneous reduction of the exhaust emissions. In order to optimize the internal combustion engines it is necessary to further improve the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. In this context, the application of optical diagnostic techniques permits a deep insight into the fundamental processes such as flow development, fuel injection, and combustion process. In this paper the analysis of the combustion process of gaseous fuel ignited by the plasma jets coming from a prechamber was performed. The investigation was carried out in an optically accessible small Direct Injection Spark-Ignition (DI SI) engine fueled with Methane. The ignition was obtained with a properly designed fueled prechamber prototype.
Journal Article

Dynamic Thermal Behavior of a GDI Spray Impacting on a Heated Thin Foil by Phase-Averaged Infrared Thermography

2019-09-09
2019-24-0036
The regulations about pollutant emissions imposed by Community’s laws encourage the investigation on the combustion optimization in modern engines and in particular in those adopting the gasoline direct injection (GDI) or direct injection spark-ignited (DISI) configuration. It is known that the piston head and cylinder surface temperatures, coupled with the fuel injection pressure, strongly influence the interaction between droplets of injected fluid and the impinged wall. In the present study, the Infrared (IR) thermography is applied to investigate the thermal footprint of an iso-octane spray generated by a multi-hole GDI injector impinging on a heated thin foil. The experimental apparatus includes an Invar foil (50 μm in thickness) heated by Joule effect, clamped within a rigid frame, and the GDI injector located 11 mm above the surface.
Technical Paper

Effects of the Ambient Conditions on the Spray Structure and Evaporation of the ECN Spray G

2019-04-02
2019-01-0283
The use of Gasoline Direct Injection (GDI) continuously increases due to the growing demand of efficiency and power output for i.c. engines. The optimization of the fuel injection process is essential to prepare an air-fuel mixture capable to promote efficient combustion, reduced fuel consumption and pollutant emissions. Good spray atomization facilitates fuel evaporation in i.c. engines thus contributing to the fuel economy and lowering the emissions. One of the key features of a multi-hole injector is to provide an optimal spray pattern in the combustion chamber and a good mixture homogenization considering the engine-specific characteristics such fuel mass-flow rate, cylinder geometry, injector position, and charge motion. This work aims to investigate the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G, serial #19).
X