Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine

2007-04-16
2007-01-0209
Particulate Emissions from Homogeneous Charge Compression Ignition (HCCI) combustion are routinely assumed to be negligible. It is shown here that this is not the case when HCCI combustion is implemented in a direct injection gasoline engine. The conditions needed to sustain HCCI operation were realized using the negative valve overlap method for trapping high levels of residual exhaust gases in the cylinder. Measurements of emitted particle number concentration and electrical mobility diameter were made with a Cambustion DMS500 over the HCCI operating range possible with this hardware. Emissions of oxides of nitrogen, carbon monoxide and unburned hydrocarbons were also measured. These data are presented and compared with similar measurements made under conventional spark ignition (SI) operation in the same engine. Under both SI and HCCI operation, a significant accumulation mode was detected with particle equivalent diameters between 80 and 100 nm.
Technical Paper

Modelling of HCCI Engines: Comparison of Single-zone, Multi-zone and Test Data

2005-05-11
2005-01-2123
This paper presents a modeling study of a gasoline HCCI engine using a single-zone and a multi-zone engine combustion models coupled with the CHEMKIN chemical kinetics solver for the closed part of the cycle. These combustion models are subsequently combined with a 1-D gas dynamics engine cycle simulation code which calculates the engine gas exchange to supply the boundary conditions for the in-cylinder simulation and also predicts engine performance. The simulated in-cylinder pressure history and charge composition at the time of exhaust valve opening are compared with the data from a parallel engine experimental project. Although the single-zone model is useful for parameter studies by predicting the trend of auto-ignition timing variations as the result of the effect of engine operating conditions, the matching of simulated and test data is good perhaps only if the mixture and temperature distributions in the cylinder are uniform.
X