Refine Your Search

Topic

Search Results

Technical Paper

Influence of Intake Charge Temperature and EGR Rate on the Combustion and Emission Characteristics of Ammonia/Diesel Dual-Fuel Engine

2024-06-12
2024-37-0025
Ammonia has emerged as a promising carbon-free alternative fuel for internal combustion engines (ICE), particularly in large-bore engine applications. However, integrating ammonia into conventional engines presents challenges, prompting the exploration of innovative combustion strategies like dual-fuel combustion. Nitrous oxide (N2O) emissions have emerged as a significant obstacle to the widespread adoption of ammonia in ICE. Various studies suggest that combining exhaust gas recirculation (EGR) with adjustments in inlet temperature and diesel injection timing can effectively mitigate nitrogen oxides (NOx) emissions across diverse operating conditions in dual-fuel diesel engines.
Technical Paper

Sustainability of Future Shipping Fuels: Well-to-Wake Environmental and Techno-Economic Analysis of Ammonia and Methanol

2023-08-28
2023-24-0093
The transportation industry has been scrutinized for its contribution towards the global greenhouse gas emissions over the years. While the automotive sector has been regulated by strict emission legislation globally, the emissions from marine transportation have been largely neglected. However, during the past decade, the international maritime organization focused on ways to lower the emission intensity of the marine sector by introducing several legislations. This sets limits on the emissions of different oxides of carbon, nitrogen and sulphur, which are emitted in large amounts from heavy fuel oil (HFO) combustion (the primary fuel for the marine sector). A 40% and 70% reduction per transport work compared to the levels of 2008 is set as target for CO2 emission for 2030 and 2050, respectively. To meet these targets, commonly, methanol, as a low-carbon fuel, and ammonia, as a zero-carbon fuel, are considered.
Technical Paper

Experimental and Numerical Insights on Battery Venting during Thermal Runaway

2023-04-11
2023-01-0502
Lithium-ion batteries have a well-documented failure tendency under abuse conditions with a significant release of gases and heat. This failure originated from the decomposition reactions within the battery’s electrochemical components, resulting in gas generation and increased internal pressure. To optimize battery safety, it is crucial to understand their behaviors when subjected to abuse conditions. The 18650 format cell incorporates a vent mechanism within a crimped cap to relieve pressure and mitigate the risk of rupture. However, cell venting introduces additional safety concerns associated with flammable gases and liquid electrolyte that flow into the environment. Experiments were performed with two venting caps with well-known geometries to quantify key parameters in describing the external dynamic flow of battery venting and to validate a CFD model.
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
Journal Article

Evaluation of the Effect of Low-Carbon Fuel Blends’ Properties in a Light-Duty CI Engine

2022-08-30
2022-01-1092
De-fossilization is an increasingly important trend in the energy sector. In the transport sector the de-fossilization efforts have been centered in promoting the electrification of vehicles, nonetheless other pathways, like the use of carbon neutral or carbon-offsetting fuels under current vehicle fleets, are also worth considering. Low-carbon fuels (LCF) can be synthetized from sources that can take advantage of the carbon already present in the atmosphere (either by technologies like direct carbon capture or biological processes like photosynthesis in biofuels) and use energy from renewable sources for the necessary industrial processes. Although, LCFs can be compared to fossil fuels as energy sources for internal combustion engines, their composition is not the same and their properties can modify the engine combustion and emissions.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Combining DMDF and Hybrid Powertrains: A Look on the Effects of Different Battery Modelling Approaches

2022-03-29
2022-01-0658
Fleet electrification has been demonstrated as a feasible solution to decarbonize the heavy-duty transportation sector. The combination of hybridization and advanced combustion concepts may provide further advantages by also introducing reductions on criteria pollutants such as nitrogen oxides and soot. In this scenario, the interplay among the different energy paths must be understood and quantified to extract the full potential of the powertrain. One of the key devices in such powertrains is the battery, which involves different aspects regarding operation, safety, and degradation. Despite this complexity, most of the models still rely on resistance-capacity models to describe the battery operation. These models may lead to unpractical results since the current flow is governed by limiters rather than physical laws. Additionally, phenomena related with battery degradation, which decreases the nominal capacity and enhances the heat generation are also not considered in this approach.
Technical Paper

Conceptual Model for the Start of Combustion Timing in the Range from RCCI to Conventional Dual Fuel

2022-03-29
2022-01-0468
In the challenge to reduce CO2, NOx and PM emissions, the application of natural gas or biogas in engines is a viable approach. In heavy duty and marine, either a conventional dual fuel (CDF), or a reactivity-controlled compression ignition (RCCI) approach is feasible on existing diesel engines. In both technologies a pilot diesel injection is used to ignite the premixed natural gas. However, the influence of injection-timing and -pressure on the start of combustion timing (SOC) is opposite between both modes. For a single operating point these relations can be explained by a detailed CFD simulation, but an intuitive overall explanation is lacking. This makes it difficult to incorporate both modes into one engine application, using a single controller. In an experimental campaign by the authors, on a medium speed engine, the lowest emissions were found to be very close to the SOC corresponding to the transition from RCCI to CDF.
Technical Paper

Potential towards CI Engines with Lower NOx Emissions through Calibration Optimization and Low-Carbon Fuels

2022-03-29
2022-01-0511
The continuous improvement of internal combustion engines (ICEs) with strategies that can be applied to existing vehicle platforms, either directly or with minor modifications, can improve efficiency and reduce GHG emissions to help achieve Paris climate targets. Low carbon fuels (LCF) as diesel substitutes for light and heavy-duty vehicles are currently being considered as a promising alternative to reduce well-to-wheel (WTW) CO2 emissions by taking advantage of the carbon offset their synthesis pathway can promote, which could capture more CO2 than it releases into the atmosphere. Additionally, some low carbon fuels, like OMEx blends, have non-sooting properties that can significantly improve the NOx-soot tradeoff. The current work studies the calibration optimization of a EU6D-TEMP light-duty engine using various LCFs with different renewable contents with the goal of reduced NOx emissions.
Technical Paper

Surrogate Fuel Formulation to Improve the Dual-Mode Dual-Fuel Combustion Operation at Different Operating Conditions

2020-09-15
2020-01-2073
Dual-mode dual-fuel combustion is a promising combustion concept to achieve the required emissions and CO2 reductions imposed by the next standards. Nonetheless, the fuel formulation requirements are stricter than for the single-fuel combustion concepts as the combustion concept relies on the reactivity of two different fuels. This work investigates the effect of the low reactivity fuel sensitivity (S=RON-MON) and the octane number at different operating conditions representative of the different combustion regimes found during the dual-mode dual-fuel operation. For this purpose, experimental tests were performed using a PRF 95 with three different sensitivities (S0, S5 and S10) at operating conditions of 25% load/950 rpm, 50%/1800 rpm and 100%/2200 rpm. Moreover, air sweeps varying ±10% around a reference air mass were performed at 25%/1800 rpm and 50%/1800 rpm. Conventional diesel fuel was used as high reactivity fuel in all the cases.
Journal Article

CO2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels

2020-06-30
2020-37-0026
Plug-in Hybrid Electric Vehicles (PHEVs) can be considered as the most promising technology to achieve the European CO2 targets together with a moderate infrastructure modification. However, the real benefits, in terms of CO2 emissions, depend on a great extent on the energy source (fuel and electricity mix), user responsibility, and vehicle design. Moreover, the electrification of the powertrain does not reduce other emissions as NOx and particulate matter (mainly soot). In the last years, low temperature combustion (LTC) modes as the reactivity controlled compression ignition (RCCI) have shown to achieve ultra-low NOx and soot emissions simultaneously due to the use of two fuels with different reactivity together with high exhaust gas recirculation (EGR) rates. Therefore, the aim of this work is to assess, through numerical simulations fed with experimental results, the effects of different energy sources on the performance and emissions of a series RCCI PHEV.
Technical Paper

PIV and DBI Experimental Characterization of Air Flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston

2019-09-09
2019-24-0100
With demanding emissions legislations and the need for higher efficiency, new technologies for compression ignition engines are in development. One of them relies on reducing the heat losses of the engine during the combustion process as well as to devise injection strategies that reduce soot formation. Therefore, it is necessary a better comprehension about the turbulent kinetic energy (TKE) distribution inside the cylinder and how it is affected by the interaction between air flow motion and fuel spray. Furthermore, new diesel engines are characterized by massive decrease of NOx emissions. Therefore, considering the well-known NOx-soot trade-off, it is necessary a better comprehension and overall quantification of soot formation and how the different injection strategies can impact it.
Technical Paper

Combined CFD - PIV Methodology for the Characterization of Air Flow in a Diesel Engine

2018-09-10
2018-01-1769
It is known that in-cylinder airflow structures during intake and compression strokes deeply affects the combustion process in compression ignition (CI) engines. This work presents a methodology for the analysis of the swirling structures by means of the CFD proprietary code Converge 2.3. The methodology is based on the CFD modelling and the comparison of results with in-cylinder velocity fields measured by particle image velocimetry (PIV). Furthermore, the analysis is extended to the accuracy evaluation of other methods available to define the flow in the cylinder of internal combustion engines, such as experiments in steady flow rigs. These methods, in junction with simple phenomenological models, have been traditionally used to determine some of the fundamental variables that define the in-cylinder flow in ICE engines. The CFD analysis is focused in the flow structures around top dead centre (TDC) at the end of the compression stroke.
Technical Paper

An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray C/D Nozzles in a Constant Pressure Vessel

2018-09-10
2018-01-1783
The Engine Combustion Network (ECN) is a coordinate effort from research partners from all over the world which aims at creating a large experimental database to validate CFD calculations. Two injectors from ECN, namely Spray C and D, have been compared in a constant pressure flow vessel, which enables a field of view of more than 100 mm. Both nozzles have been designed with similar flow metrics, with Spray D having a convergent hole shape and Spray C a cylindrical one, the latter being therefore more prone to cavitation. Although the focus of the study is on reacting conditions, some inert cases have also been measured. High speed schlieren imaging, OH* chemiluminescence visualization and head-on broadband luminosity have been used as combustion diagnostics to evaluate ignition delay, lift off length and reacting tip penetration. Parametric variations include ambient temperature, oxygen content and injection pressure variations.
Technical Paper

Evaluation of Vortex Center Location Algorithms for Particle Image Velocimetry Data in an Optical Light-Duty Compression Ignition Engine

2018-04-03
2018-01-0209
Ever decreasing permitted emission levels and the necessity of more efficient engines demand a better understanding of in-cylinder phenomena. In swirl-supported compression ignition (CI) engines, mean in-cylinder flow structures formed during the intake stroke deeply influence mixture preparation prior to combustion, heat transfer and pollutant oxidation all of which could potentially improve engine performance. Therefore, the ability to characterize these mean flow structures is relevant for achieving performance improvements. CI mean flow structure is mainly described by a precessing vortex. The location of the vortex center is key for the characterization of the flow structure. Consequently, this work aims at evaluating algorithms that allow for the location of the vortex center both, in ensemble-averaged velocity fields and in instantaneous velocity fields.
Technical Paper

Influence of Direct-Injected Fuel Properties on Performance and Emissions from a Light-Duty Diesel Engine Running Under RCCI Combustion Mode

2018-04-03
2018-01-0250
The dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI) allows an effective control of the combustion process by means of modulating the in-cylinder fuel reactivity depending on the engine operating conditions. This strategy has been found to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with diesel-like or better thermal efficiency in a great part of the engine map. The role of the low reactivity fuel properties and engine settings over RCCI combustion has been widely investigated in literature, concluding that the direct-injected fuel injection timing is a key parameter for controlling the in-cylinder fuel stratification. From this, it can be inferred that the physical and chemical characteristics of the direct-injected fuel should have also an important role on the RCCI combustion process.
Journal Article

Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled with Diesel and Gasoline at Different Engine Speeds

2017-09-04
2017-24-0085
This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines the port fuel injection of low-reactive/gasoline-like fuels with direct injection of highly reactive/diesel-like fuels. The particulates size distributions from 5-250 nm were measured using a scanning mobility particle sizer at six engine speeds, from 950 to 2200 rpm, and 25% engine load. The same procedure was followed for conventional diesel combustion. The study was performed in a single-cylinder engine derived from a stock medium-duty multi-cylinder diesel engine of 15.3:1 compression ratio. The combustion strategy proposed during the tests campaign was limited to accomplish both mechanical and emissions constraints. The results confirms that reactivity controlled compression ignition promotes ultra-low levels of nitrogen oxides and smoke emissions in the points tested.
Technical Paper

Soot Characterization of Diesel/Gasoline Blends Injected through a Single Injection System in CI engines

2017-09-04
2017-24-0048
In the past few years’ various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Technical Paper

Characterization of In-Cylinder Soot Oxidation Using Two-Color Pyrometry in a Production Light-Duty Diesel Engine

2016-04-05
2016-01-0735
Engine-out soot emissions are the result of a complex balance between in-cylinder soot formation and oxidation. Soot is formed in the diffusion flame, just after the lift-off length (LOL). Size and mass of soot particles increase through the diffusion flame and finally they are partially oxidized at the flame front. Therefore, engine-out soot emissions depend on the amount of soot formed and oxidized inside the combustion chamber. There is a considerable amount of work in the literature on characterization of soot formation. However, there is a clear lack of published research related to the characterization of soot oxidation. Thus, the main objective of the current research is to provide more knowledge and insight into the soot oxidation processes. For this purpose, a combination of theoretical and experimental tools were used. In particular, in-cylinder optical thickness (KL) was quantified with an optoelectronic sensor that uses two-color pyrometry.
X