Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measurement of Sub-23 nm particles emitted by gasoline direct injection engine with new advanced instrumentation

2019-12-19
2019-01-2195
The research on health effects of soot particles has demonstrated their toxic impact on humans, especially for the smallest ones that can pass through the lungs into the bloodstream and be transferred to other parts of the body. Since the Euro 5b regulation, the total particle number (PN) at the exhaust is limited, but the associated protocol developed by the Particle Measurement Program (PMP) group defined a counting efficiency at the 23 nm cut-off particle diameter to avoid measurement artefacts [1][2]. Recent studies have demonstrated that the last generation Euro 6 engines can emit as many particles in the range 10-23 nm as beyond 23 nm [3]. The SUREAL-23 project (Understanding, Measuring and Regulating Sub-23 nm Particle Emissions from Direct Injection Engines Including Real Driving Conditions), funded by Horizon 2020 EU-program, aims to develop sampling, conditioning and measuring instruments and associated methodologies to extend the existing protocol down to at least 10 nm.
Technical Paper

Growth and Restructuring Phenomena of Deposits in Particulate Filters

2018-04-03
2018-01-1265
As use of Particulate Filters (PFs) is growing not only for diesel but also for gasoline powered vehicles, the need for better understanding of deposit structure, growth dynamics and evolution arises. In the present paper we address a number of deposit growth and restructuring phenomena within particulate filters with the aim to improve particulate filter soot load estimation. To this end we investigate the dynamic factors that quantify the amount of particles that are stored within the wall and the restructuring of soot deposits. We demonstrate that particle accumulation inside the porous wall is dynamically controlled by the dimensionless Peclet number and provide a procedure for the estimation of parameters of interest such as the loaded filter wall permeability, the wall-stored soot mass at the onset of cake filtration.
Journal Article

Investigation of SCR Catalysts for Marine Diesel Applications

2017-03-28
2017-01-0947
Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
Journal Article

Catalytic Soot Oxidation: Effect of Ceria-Zirconia Catalyst Particle Size

2016-04-05
2016-01-0968
Catalysts that have been extensively investigated for direct soot oxidation in Catalyzed Diesel Particulate Filters (CDPFs) are very often based on mixed oxides of ceria with zirconia, materials known to assist soot oxidation by providing oxygen to the soot through an oxidation-reduction catalytic cycle. Besides the catalyst composition that significantly affects soot oxidation, other parameters such as morphological characteristics of the catalyst largely determined by the synthesis technique followed, as well as the reagents used in the synthesis may also contribute to the activity of the catalysts. In the present work, two ceria-zirconia catalyst samples with different zirconia content were subjected to different milling protocols with the aim to shift the catalyst particle size distribution to lower values. The produced catalysts were then evaluated with respect to their soot oxidation activity following established protocols from previous works.
Technical Paper

Further Experimental Study of Asymmetric Plugging Layout on DPFs: Effect of Wall Thickness on Pressure Drop and Soot Oxidation

2015-04-14
2015-01-1016
In order to guide the development of asymmetric plugging layout Diesel Particulate Filters, hereafter referred to as “VPL-DPF”, in this paper we present some evaluation results regarding the effect of design parameters on the VPL-DPF performance. VPL-DPF samples which have different wall thicknesses (thin and thick walls) were evaluated in regards to their pressure drop and soot oxidation behaviors, with the aim to optimize the design of DPF structure. As a result of pressure drop evolution during soot loading, contrary to our expectation, in some cases, it was found out that VPL increases the transient pressure drop compared to the conventional plugging layout DPF. That meant there is an appropriate specific optimum wall thickness for adoption of VPL which has to be well defined at its structural design phase. Based on our previous research, it is expected that this result is due to interactions among the different (five) wall flows that exist in a VPL-DPF.
Journal Article

Analysis of Asymmetric and Variable Cell Geometry Wall-Flow Particulate Filters

2014-04-01
2014-01-1510
Asymmetric and Variable Cell (AVC) geometry Diesel Particulate Filters (DPF) occupy an increasing portion of the DPFs currently offered by various DPF manufacturers, aiming at providing higher filtration area in the same filter volume to meet demanding emission control applications for passenger cars but also for heavy duty vehicles. In the present work we present an approach for designing and optimizing such DPFs by providing a quantitative description of the flow and deposition of soot in these structures. Soot deposit growth dynamics in AVC DPFs is studied computationally, primary and secondary flows over the inlet channels cross-sectional perimeters are analyzed and their interactions are elucidated. The result is a rational description of the observed growth of soot deposits, as the flow readjusts to transport the soot particles along the path of least resistance (which is not necessarily the shortest geometric path between the inlet and outlet channel, i.e. the wall thickness).
Technical Paper

Experimental Study of Physical and Chemical Properties of Soot under Several EGR Conditions

2014-04-01
2014-01-1593
Exhaust Gas Recirculation (EGR) is an effective method to reduce Nitrogen Oxide emissions. In recent years the trend of increasing EGR rate in-cylinders is an integral part of most improvements in combustion technology developments. The object of this work is to study the influence of EGR rate on the physical and chemical properties of soot particles. Soot from several operating points of a diesel engine run were collected on a high temperature filters. The pressure drop behavior during the soot loading was monitored then the soot permeability was calculated. Afterwards, the soot primary size was calculated from the obtained data and it showed good correspondence to the actual measurement. It is confirmed that all the soot primary sizes were around 22 nm in diameter. In contrast, the soot aggregate sizes and the soot concentrations were found to increase with increasing EGR rate. Subsequently, Oxidation tests were conducted to evaluate the reactivity of the soot.
Journal Article

Experimental Study of Thermal Aging on Catalytic Diesel Particulate Filter Performance

2013-04-08
2013-01-0524
In this paper, a methodology is presented to study the influence of thermal aging on catalytic DPF performance using small scale coated filter samples and side-stream reactor technology. Different mixed oxide catalytic coating families are examined under realistic engine exhaust conditions and under fresh and thermally aged state. This methodology involves the determination of filter physical (flow resistance under clean and soot loaded conditions and filtration efficiency) and chemical properties (reactivity of catalytic coating towards direct soot oxidation). Thermal aging led to sintering of catalytic nanoparticles and to changes in the structure of the catalytic layer affecting negatively the filter wall permeability, the clean filtration efficiency and the pressure drop behavior during soot loading. It also affected negatively the catalytic soot oxidation activity of the catalyzed samples.
Technical Paper

Development of High Porosity SiC-DPF Which is Compatible with High Robustness and Catalyst Coating Capability for SCR Coated DPF Application

2013-04-08
2013-01-0840
Diesel emission regulation becomes stringent more and more regarding both particulate matter (PM) and NOx in the worldwide. SCR coated DPF system is considered as one of the promising options for future diesel exhaust after-treatment because it has several benefits such as the downsizing of the system, quick light-off of the catalytic function due to mounting closed-couple position. To integrate the SCR converter into the DPF, it is necessary to design the DPF substrate's porosity higher and pore size larger than conventional DPF to improve SCR catalyst coating capability. However to make the porosity higher will lose the robustness in general. Against these problems, it was studied to improve the high porosity DPF performances by applying the new technology to modify the thermal shock resistance property.
Technical Paper

Durability of Filtration Layers Integrated into Diesel Particulate Filters

2013-04-08
2013-01-0837
This paper describes the durability of the filtration layer integrated into Diesel Particulate Filters (DPFs) that we have developed to ensure low pressure loss and high filtration efficiency performances which also meet emission regulations. DPF samples were evaluated in regards to their performance deterioration which is brought about by ash loading and uncontrolled regeneration cycles, respectively. Ash was synthesized by using a diesel fuel/lubrication oil mixture and was trapped up to a level which corresponded to a 240,000km run, into the DPFs both with and without the filtration layer. Afterwards, aged-DPFs were measured with respect to their permeability, pressure loss, filtration efficiency, as well as soot oxidation speed using suitable analytical methods. Consequently, it has been confirmed that there was no noteworthy deterioration of the performances in the DPF with the filtration layer.
Technical Paper

Soot Loading Estimation Accuracy Improvement by Filtration Layer Forming on DPF and New Algorithm of Pressure Loss Measurement

2013-04-08
2013-01-0525
A diesel particulate filter (DPF) is a key component for reduction of engine soot emission. The soot collected in the DPF is periodically burned off, so-called DPF regeneration, and a behavior of the pressure drop increased by the soot loading is generally utilized to estimate the amount, which must be a trigger of the regeneration. However, it is said that the estimation of the soot loading amount has considerable dispersion caused by two main reasons. One is hysteresis of the transient pressure drop resulted from the combination of so-called deep-bed and cake filtration modes. The other is a fluctuation of exhaust gas temperature and flow rate as well as a pulsation from the engine. In this study, the accurate estimation method of the soot amount accumulated in the DPF was proposed in combination with filtration layers (FLs) technology and a new algorithm based on fast Fourier transform (FFT) technology.
Technical Paper

The Micromechanics of Catalytic Soot Oxidation in Diesel Particulate Filters

2012-04-16
2012-01-1288
Despite the great effort devoted to the modeling of the operation of catalytic DPFs, even today very simple expressions are used for the soot oxidation rate. In the relevant to DPF operation case of a gas phase rich in oxygen, the structure of the soot-catalyst geometry and its evolution during oxidation determines the reaction rate. An extensive set of controlled experiments (isothermal or with linear temperature increase) using fuel borne catalysts and catalytic coatings has been performed in order to obtain corresponding soot oxidation rate-conversion curves. The shape of the resulting curves cannot be described by the typical theories for solid phase reactions posing the need for microstructural models for the micromechanics of soot catalyst interactions.
Technical Paper

Computationally Fast Implementations of Convection, Diffusion and Chemical Reaction Phenomena in Diesel Particulate Filters

2010-04-12
2010-01-0890
In the present work we derive analytical solutions for the problem of convection, diffusion and chemical reaction in wall-flow monoliths. The advantage of having analytical instead of numerical treatments is clear as the analytical solutions not only can be exploited to bring full scale simulations of diesel particulate filters to the real time domain, but also they enable efficient implementations on computationally limited engine control units (ECUs) for on-board management and control of emission control systems. The presentation describes the mathematical problem formulation, the governing dimensionless parameters and the corresponding assumptions. Then the analytical solution is derived and several asymptotic (for limiting values of the parameters) and approximating solutions are developed, corresponding to different physical situations. Reactant distributions in the filter are presented and discussed for several values of the parameters.
Technical Paper

Multi-Functional Reactor for Emission Reduction of Future Diesel Engine Exhaust

2009-04-20
2009-01-0287
Future diesel emission control systems have to effectively operate under non-conventional low-temperature combustion engine operating conditions. In this work the research and development efforts for the realization of a Multi-Functional catalyst Reactor (MFR) for the exhaust of the upcoming diesel engines is presented. This work is based on recent advances in catalytic nano-structured materials synthesis and coating techniques. Different catalytic functionalities have been carefully distributed in the filter substrate microstructure for maximizing the direct and indirect (NO2-assisted) soot oxidation rate, the HC and CO conversion efficiency as well as the filtration efficiency. Moreover, a novel filter design has been applied to enable internal heat recovery capability by the implementation of heat exchange between the outlet and the inlet to the filter flow paths.
Journal Article

Micro-Simulation of NO-NO2 Transport and Reaction in the Wall of a Catalyzed Diesel Particulate Filter

2008-04-14
2008-01-0442
Catalyzed Diesel Particulate Filters (CDPFs) continue to be an important emission control solution and are now also expanding to include additional functionalities such as gas species oxidation (such as CO, hydrocarbons and NO) and even storage phenomena (such as NOx and NH3 storage). Therefore an in depth understanding of the coupled transport - reaction phenomena occurring inside a CDPF wall can provide useful guidance for catalyst placement and improved accuracy over idealized effective medium 1-D and 0-D models for CDPF operation. In the present work a previously developed 3-D simulation framework for porous materials is applied to the case of NO-NO2 turnover in a granular silicon carbide CDPF. The detailed geometry of the CDPF wall is digitally reconstructed and micro-simulation methods are used to obtain detailed descriptions of the concentration and transport of the NO and NO2 species in the reacting environment of the soot cake and the catalyst coated pores of the CDPF wall.
Journal Article

Catalytic Nano-structured Materials for Next Generation Diesel Particulate Filters

2008-04-14
2008-01-0417
The increasing need for controlled diesel engine emissions and the strict regulations in the abatement of diesel exhaust products lead to an ever increasing use of Diesel Particulate Filters (DPFs) in OEM applications. The periodic regeneration of DPFs (oxidation of soot particles) demands temperatures that rarely appear during engine operation. It is therefore necessary to employ direct or indirect catalytic measures. In the present work, the development and synthesis via aerosol-based routes, of nanostructured base metal oxides for direct soot oxidation, along with their characterization and their evaluation in engine exhaust is described. The synthesized powders were characterized with respect to their phase composition and morphology. XRD, SEM and TEM analysis have shown the nanostructured character of the powders, while Raman spectroscopy was employed for the preliminary characterization of the materials surface chemistry.
Technical Paper

Advanced Catalyst Coatings for Diesel Particulate Filters

2008-04-14
2008-01-0483
Novel catalytic coatings with a variety of methods based on conventional and novel synthesis routes are developed for Diesel Particulate Filters (DPFs). The developed catalytic composition exhibits significant direct soot oxidation as evaluated by reacting mixtures of diesel soot and catalyst powders in a thermogravimetric analysis apparatus (TGA). The catalyst composition was further deposited on oxide and non-oxide porous filter structures that were evaluated on an engine bench with respect to their filtration efficiency, pressure drop behavior and direct soot oxidation activity under realistic conditions. The effect of the catalyst amount on the filtration efficiency of non-oxide filters was also investigated. Evaluation of the indirect soot oxidation was conducted on non-oxide catalytic filters coated with precious metal.
Technical Paper

Advanced High Porosity Ceramic Honeycomb Wall Flow Filters

2008-04-14
2008-01-0623
A new platform of advanced ceramic composite filter materials for diesel particulate matter and exhaust gas emission control has been developed. These materials exhibit high porosity, narrow pore-size distribution, robust thermo-mechanical strength, and are extruded into high cell density honeycomb structures for wall-flow filter applications. These new high porosity filters provide a structured filtration surface area and a highly connected wall pore space which is fully accessible for multi-phase catalytic reactions. The cross-linked microstructure (CLM™) pore architecture provides a large surface area to host high washcoat/catalyst loadings, such as those required for advanced multi-functional catalysts (4-way converter applications).
Technical Paper

Improving of the Filtration and Regeneration Performance by the Sic-DPF with the Layer Coating of PM Oxidation Catalyst

2008-04-14
2008-01-0621
DPF has become widely known as an indispensable after-treatment component for the purification of the particulate matter in the diesel exhaust gas. But, in order to correspond to further regulation strengthening such as carbon dioxide emission regulation and number-based particulate matter emission regulation, it must be necessary also for DPF to keep improving its performance. In this study, it was examined how to improve both the filtration efficiency and the oxidation efficiency of PM regarding the catalyzed DPF. SiC-made 10mil/300cpsi-OctoSquare asymmetric cell structure was chosen for the DPF substrate and PM oxidation catalyst was coated on the surface of the filter wall as a layer with the device of the coating method. As a result, it was found that the layer coated DPF has advantage on the filtration efficiency without soot accumulation and efficiency was similar to an uncoated one with 0.1 g/l soot loading.
Technical Paper

A Mobile Laboratory for On-board and Ambient Level Emissions Measurement

2008-04-14
2008-01-0756
Although engine emissions per vehicle have been reduced for twenty years with technical developments in the fields of engine, after-treatment technologies and fuels the urban air pollution problem still exists in many cities around the world. Forthcoming emission regulations will require further development of new complex technologies to reach low emissions. On-board driving assessment of such technologies offers significant advantages in the development phase of novel emission reduction. In this paper we present the design, development and commissioning of a mobile laboratory able to monitor on-board along the exhaust line gaseous and particulate pollutants as well as measure these pollutants in the ambient environment around the vehicle.
X