Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Effect of Corona Discharge on Pre-Mixed Combustion

2009-11-03
2009-32-0095
The flame propagation behavior of hydrogen-air and propane-air mixtures under application of high-voltage non-uniform electric field was explored by using combustion vessel. Both mixtures were ignited by laser-induced breakdown of Nd:YAG laser. In a case of propane-air mixture, top of flame front was drawn to the electrode and bottom of flame front was expanded. In a case of hydrogen-air mixture, the wrinkle caused by the preferential diffusion was enhanced by corona discharge, however the entire flame front was merely moved toward downward by corona wind. Therefore, the non-uniform electric field strongly influences charged particles originated in hydrocarbon of propane-air mixture.
Technical Paper

A Study of Knocking Using Ion Current and Light Emission

2003-09-16
2003-32-0038
This study attempted to elucidate combustion conditions in a progression from normal combustion to knocking by analyzing the ion current and light emission intensity that occurred during this transition. With the aim of understanding the combustion states involved, the ion current was measured at two positions in the combustion chamber. Light emission spectroscopy was applied to examine preflame reactions that are observed prior to autoignition in the combustion process of hydrocarbon fuels. The results obtained by analyzing the experimental data made clear the relationship between the ion current and light emission during the transition from normal combustion to knocking operation.
Technical Paper

An Analysis of Light Emission Intensity Behavior Corresponding to Intermediate Products in Different Places of the Combustion Chamber

2001-12-01
2001-01-1882
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition in the combustion reaction process of hydrocarbon fuels. Attention was focused on light emission behavior at wavelengths corresponding to those of formaldehyde (HCHO), Vaidya's hydrocarbon flame band (HCO) and the OH radical in a forced progression from normal combustion to a knocking state. Light emission behavior was measured simultaneously in the center and in the end zone of the combustion chamber when the engine was operated on two different test fuels. The test fuels used were n-heptane (0 RON) and a blended fuel (70 RON) consisting of n-heptane (0 RON) and iso-octane (100 RON).
X