Refine Your Search

Topic

Search Results

Standard

Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

2023-05-01
CURRENT
J1681_202305
This SAE Recommended Practice presents recommendations for test fuels and fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document: a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes handling and usage of test fuels e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
Standard

Requirements for Built-in Service Port for On-Board Diagnostics

2020-03-11
CURRENT
J2744_202003
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2019-08-26
CURRENT
J1737_201908
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls, as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2018-12-19
CURRENT
J2973_201812
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Test Method to Measure Fluid Permeation of Polymeric Materials by Speciation

2018-12-12
CURRENT
J2659_201812
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2014-02-05
HISTORICAL
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2013-05-14
HISTORICAL
J1737_201305
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Standard

Test Method to Measure Fluid Permeation of Polymeric Materials by Speciation

2012-07-30
HISTORICAL
J2659_201207
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2012-05-31
CURRENT
J2785_201205
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2012-05-31
HISTORICAL
J285_201205
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2009-08-13
CURRENT
J2044_200908
This SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions: a Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b Operating pressure up to 500 kPa, 5 bar, (72 psig). c Operating vacuum down to −50 kPa, −0.5 bar (−7.2 psi). d Operating temperatures from −40 °C (−40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Standard

Requirements for Built-In Service Port for On Board Diagnostics

2008-08-11
HISTORICAL
J2744_200808
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2007-04-23
HISTORICAL
J285_200704
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2004-11-17
HISTORICAL
J1737_200411
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2002-09-13
HISTORICAL
J2044_200209
This SAE Recommended Practice defines standard tube end form dimensions so as to guarantee interchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions: a Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b Operating pressure up to 500 kPa, 5 bar, (72 psig). c Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi). d Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection.
Standard

Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

2000-01-10
HISTORICAL
J1681_200001
This SAE Recommended Practice presents recommendations for test fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes preparations for test fluids and e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
Standard

Quick Connector Specification for Liquid Fuel and Vapor/Emissions Systems

1997-12-01
HISTORICAL
J2044_199712
This SAE Recommended Practice defines the minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible-tubing systems. This document applies to automotive and light truck gasoline and diesel fuel systems with operating pressure or vacuum up to 500 kPa, 5 bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before re-connecting. Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

1997-08-01
HISTORICAL
J1737_199708
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which liquids which are transported through walls and joints are collected by a controlled flow of nitrogen (dry) and adsorbed by activated charcoal.
Standard

QUICK CONNECTOR SPECIFICATION FOR LIQUID FUEL AND VAPOR/EMISSIONS SYSTEMS

1996-01-01
HISTORICAL
J2044_199601
This SAE Recommended Practice defines the minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible tubing systems. This document applies to automotive and light truck gasoline and diesel fuel systems with operating pressures up to 500 kPa, 5 bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before re-connecting. Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
X