Refine Your Search

Topic

Author

Search Results

Technical Paper

Demonstration of High Compression Ratio Combustion Systems for Heavy-Duty Diesel Engine with Improved Efficiency and Lower Emissions

2022-03-29
2022-01-0427
Advanced diesel combustion systems continue to push the peak cylinder pressure limit of engines upward to allow high-efficiency combustion with high compression ratios (CR). The air-standard Otto and Diesel cycles indicate increased compression ratios lead to higher cycle efficiency. The study presented here describes the development and demonstration of a high-efficiency diesel combustion system. The study used both computational and experimental tools to develop the combustion system fully. Computational fluid dynamics (CFD) simulations were carried out to evaluate combustion with two combustion systems at a compression ratio of 22:1 with a Wave piston design (based on the production Volvo Wave piston). Analysis of combustion performance and emissions were performed to confirm the improvements these piston designs offered relative to the baseline combustion system for the engine. Companion single-cylinder engine (SCE) experiments were performed to validate the simulation results.
Technical Paper

Investigation of Gasoline Compression Ignition (GCI) Combustion in a High Compression-Ratio Heavy-duty Single-Cylinder Diesel Engine

2021-04-06
2021-01-0495
In this study, a high-efficiency heavy-duty diesel engine platform was used to evaluate gasoline compression ignition (GCI) operation. The experiment was carried out using a single-cylinder engine (SCE) of a high compression ratio (22:1). Pump-grade gasoline fuel 87 research octane number (RON) was used throughout engine testing. Injection strategy was established including double and triple injection schemes to optimize both engine efficiency and emissions. Both low-temperature heat release (LTHR) and high-temperature heat release (HTHR) were seen from a two-stage combustion event resulting from the interaction of pilot and main injections. At low load conditions, besides fuel stratification level by pilot/main injection strategy, higher in-cylinder pressure can greatly improve the ignition of 1st stage combustion. As engine load increases, spray-wall interaction becomes more critical on engine efficiency and emissions performance.
Technical Paper

Evaluation of Zero Oil Cooling for Improved BTE in a Compression Ignition Engine

2020-04-14
2020-01-0284
With increasing diesel engine emissions regulations and the desire to increase overall thermal efficiency of the engine, various combustion concepts have been explored. One of the potential pathways to higher efficiency is through reduction of in-cylinder heat transfer. In this paper, a concept aimed at decreasing in-cylinder heat transfer through increased piston temperature is explored. In order to increase piston temperature and ideally reduce in-cylinder heat transfer, a Zero-Oil-Cooling (ZOC) piston concept was explored. To study this concept, the test engine was modified to allow piston oil cooling to be deactivated so that its impact on parameters such as BTE, piston temperature, and emissions could be evaluated. The engine was equipped with in-cylinder pressure measurement for combustion analysis as well as a piston temperature telemetry system to evaluate piston crown temperature. This paper will discuss the process by which the engine was modified to achieve ZOC and tested.
Technical Paper

Investigation of an Advanced Combustion System for Stoichiometric Diesel to Reduce Soot Emissions

2019-01-15
2019-01-0023
Diesel engines are facing increased competition from gasoline engines in the light-duty and small non-road segments, primarily due to the high relative cost of emissions control systems for lean-burn diesel engines. Advancements in gasoline engine technology have decreased the operating cost advantage of diesels and the relatively high initial-cost disadvantage is now too large to sustain a strong business position. SwRI has focused several years of research efforts toward enabling diesel engine combustion systems to operate at stoichiometric conditions, which allows the application of a low-cost three-way catalyst emission control system which has been well developed for gasoline spark-ignited engines. One of the main barriers of this combustion concept is the result of high smoke emissions from poor fuel/air mixing.
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2) - Part 2

2017-03-28
2017-01-0766
The CO2 advantage coupled with the low NOX and PM potential of natural gas (NG) makes it well-suited for meeting future greenhouse gas (GHG) and NOX regulations for on-road medium and heavy-duty engines. However, because NG is mostly methane, reduced combustion efficiency associated with traditional NG fueling strategies can result in significant levels of methane emissions which offset the CO2 advantage due to reduced efficiency and the high global warming potential of methane. To address this issue, the unique co-direct injection capability of the Westport HPDI fuel system was leveraged to obtain a partially-premixed fuel charge by injecting NG during the compression stroke followed by diesel injection for ignition timing control. This combustion strategy, referred to as DI2, was found to improve thermal and combustion efficiencies over fumigated dual-fuel combustion modes.
Technical Paper

Dual Fuel Combustion Study Using 3D CFD Tool

2016-04-05
2016-01-0595
The current boom in natural gas from shale formations in the United States has reduced the price of natural gas to less than the price of petroleum fuels. Thus it is attractive to convert high horsepower diesel engines that use large quantities of fuel to dual fuel operation where a portion of the diesel fuel is replaced by natural gas. The substitution is limited by emissions of unburned natural gas and severe combustion phenomena such as auto-ignition or knock of the mixture and high rates of pressure rise during the ignition and early phase combustion of the diesel and natural gas-air mixture. In this work, the combustion process for dual fuel combustion was investigated using 3D CFD. The combustion process was modeled using detailed chemistry and a simulation domain sensitivity study was conducted to investigate the combustion to CFD geometry assumptions. A baseline model capturing the onset of knock was validated against experimental data from a heavy-duty dual-fuel engine.
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2)

2016-04-05
2016-01-0779
For the US market, an abundant supply of natural gas (NG) coupled with recent green-house gas (GHG) regulations have spurred renewed interest in dual-fuel combustion regimes. This paper explores the potential of co-direct injection to improve the efficiency and reduce the methane emissions versus equivalent fumigated dual-fuel combustion systems. Using the Westport HPDI engine as the experimental test platform, the paper reports the results obtained using both diffusion controlled (HPDI) combustion strategy as well as a partially-premixed combustion strategy (DI2). The DI2 combustion strategy shows good promise, as it has been found to improve the engine efficiency by over two brake thermal efficiency (BTE) points (% fuel energy) compared to the diffusion controlled combustion strategy (HPDI) while at the same time reducing the engine-out methane emissions by 75% compared to an equivalent fumigated dual-fuel combustion system.
Technical Paper

Evaluation of Cold Start Technologies on a 3L Diesel Engine

2016-04-05
2016-01-0823
Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

2013-04-08
2013-01-0907
Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

Numerical and Experimental Characterization of the Dual-Fuel Combustion Process in an Optically Accessible Engine

2013-04-08
2013-01-1670
The dual-fuel combustion process of ethanol and n-heptane was characterized experimentally in an optically accessible engine and numerically through a chemical kinetic 3D-CFD investigation. Previously reported formaldehyde PLIF distributions were used as a tracer of low-temperature oxidation of straight-chained hydrocarbons and the numerical results were observed to be in agreement with the experimental data. The numerical and experimental evidence suggests that a change in the speed of flame propagation is responsible for the observed behavior of the dual-fuel combustion, where the energy release duration is increased and the maximum rate of pressure rise is decreased. Further, an explanation is provided for the asymmetrical energy release profile reported in literature which has been previously attributed to an increase in the diffusion-controlled combustion phase.
Journal Article

Ethanol/N-Heptane Dual-Fuel Partially Premixed Combustion Analysis through Formaldehyde PLIF

2012-04-16
2012-01-0685
As a result of recent focus on the control of Low Temperature Combustion (LTC) modes, dual-fuel combustion strategies such as Reactivity Controlled Compression Ignition (RCCI) have been developed. Reactivity stratification of the auto-igniting mixture is thought to be responsible for the increase in allowable engine load compared to other LTC combustion modes such as Homogenous Charge Compression Ignition (HCCI). The current study investigates the effect of ethanol intake fuel injection on in-cylinder formaldehyde formation and stratification within an optically accessible engine operated with n-heptane direct injection using optical measurements and zero-dimensional chemical kinetic models. Images obtained by Planar Laser Induced Fluorescence (PLIF) of formaldehyde using the third harmonic of a pulsed Nd:YAG laser indicate an increase in formaldehyde heterogeneity as measured by the fluorescence signal standard deviation.
Technical Paper

Effect of Intake Pressure and Temperature on the Auto-Ignition of Fuels with Different Cetane Number and Volatility

2012-04-16
2012-01-1317
This paper investigates the effect of boost pressure and intake temperature on the auto-ignition of fuels with a wide range of properties. The fuels used in this investigation are ULSD (CN 45), FT-SPK (CN 61) and two blends of JP-8 (with CN 25 and 49). Detailed analysis of in-cylinder pressure and rate of heat release traces are made to correlate the effect of intake pressure and injection strategy on the events immediately following start of injection leading to combustion. A CFD model is applied to track the effect of intake pressure and injection strategy on the formation of different chemical species and study their role and contribution in the auto-ignition reactions. Results from a previous investigation on the effect of intake temperature on auto-ignition of these fuels are compared with the results of this investigation.
Technical Paper

Closed Loop Control Using Ion Current Signal in a Diesel Engine

2012-04-01
2011-01-2433
Signals indicative of in-cylinder combustion have been under investigation for the control of diesel engines to meet stringent emission standards and other production targets in performance and fuel economy. This paper presents the results of an investigation on the use of the ion current signal for the close loop control of a heavy duty four cylinder turbocharged diesel engine equipped with a common rail injection system. A correlation is developed between the start of ion current signal (SIC) and the location of the peak of premixed combustion (LPPC) in the rate of heat release trace. Based on this correlation, a PID closed loop controller is developed to adjust the injection timing for proper combustion phasing under steady and transient engine operating conditions.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Technical Paper

Effect of Using Biodiesel (B-20) and Combustion Phasing on Combustion and Emissions in a HSDI Diesel Engine

2011-04-12
2011-01-1203
The use of biodiesel and its blends with ultra low sulfur diesel (ULSD) is gaining significant importance due to its ability to burn in conventional diesel engines with minor modifications. However the chemical and physical properties of biodiesel are different compared to the conventional ULSD. These differences directly impact the injection, spray formation, auto ignition and combustion processes which in turn affect the engine-out emissions. To understand the effect of fueling with B-20, tests were conducted on a single cylinder 0.42L direct injection research diesel engine. The engine is equipped with a common rail injection system, variable EGR and swirl control systems and was operated at a constant engine speed of 1500 rpm and 3 bar IMEP to simulated turbocharged conditions. Injection timing and duration were adjusted with B-20 at different locations of peak premixed combustions (LPPC) and two different swirl ratios to achieve 3 bar IMEP.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Technical Paper

Effect of Biodiesel and its Blends on Particulate Emissions from HSDI Diesel Engine

2010-04-12
2010-01-0798
The effect of biodiesel on the Particulate emissions is gaining significant attention particularly with the drive for the use of alternative fuels. The particulate matter (PM), especially having a diameter less than 50 nm called the Nanoparticles or Nucleation mode particles (NMPs), has been raising concerns about its effect on human health. To better understand the effect of biodiesel and its blends on particulate emissions, steady state tests were conducted on a small-bore single-cylinder high-speed direct-injection research diesel engine. The engine was fueled with Ultra-Low Sulfur Diesel (ULSD or B-00), a blend of 20% soy-derived biodiesel and 80% ULSD on volumetric basis (B-20), B-40, B-60, B-80 and 100% soy-derived biodiesel (B-100), equipped with a common rail injection system, EGR and swirl control systems at a load of 5 bar IMEP and constant engine speed of 1500 rpm.
X