Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Analysis of Mixing of Bio-Hybrid Fuels in a Direct Injection Engine with a Pre-Chamber Ignition System

2024-04-09
2024-01-2619
Numerical analyses of the liquid fuel injection and subsequent fuel-air mixing for a high-tumble direct injection engine with an active pre-chamber ignition system at operation conditions of 2000 RPM are presented. The Navier-Stokes equations for compressible in-cylinder flow are solved numerically using a hierarchical Cartesian mesh based finite-volume method. To determine the fuel vapor before ignition large-eddy flow simulations are two-way coupled with the spray droplets in a Lagrangian Particle Tracking (LPT) formulation. The combined hierarchical Cartesian mesh ensures efficient usage of high performance computing systems through solution adaptive refinement and dynamic load balancing. Computational meshes with approximately 170 million cells and 1.0 million spray parcels are used for the simulations.
Technical Paper

Investigation of Gasket Sealing Behavior of an All-Aluminum High Performance, New Generation Passenger Car Engine under Extreme Engine Operating Conditions

2024-01-16
2024-26-0033
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head.
Technical Paper

Turbo Compounding of a Naturally Aspirated Single Cylinder Diesel Engine – A Simulation and Experimental Study

2023-10-24
2023-01-1845
Almost one-third of the fuel energy is wasted into the atmosphere via exhaust gas from an internal combustion engine. Despite several advancements in waste heat recovery technology, single-cylinder engines in the market that are currently in production remain naturally aspirated without any waste heat recovery techniques. Turbocharging is one of the best waste heat recovery techniques. However, a standard turbocharger cannot be employed in the single-cylinder engine due to technical challenges such as pulsated flow conditions at the exhaust, phase lag in the intake and exhaust valve opening. Of late, the emphasis on reducing exhaust emissions has been a primary focus for any internal combustion engine manufacturer, with the onset of stricter emission norms. Thus, the engine designer must prioritize emission reduction without compromising engine performance.
Technical Paper

Pre-ignition Behavior of Gasoline Blends in a Single- Cylinder Engine with Varying Boost Pressure and Compression Ratio

2023-09-29
2023-32-0120
Pre-ignition in a boosted spark-ignition engine can be triggered by several mechanisms, including oil-fuel droplets, deposits, overheated engine components and gas-phase autoignition of the fuel-air mixture. A high pre-ignition resistance of the fuel used mitigates the risk of engine damage, since pre-ignition can evolve into super-knock. This paper presents the pre-ignition propensities of 11 RON 89-100+ gasoline fuel blends in a single-cylinder research engine. Albeit the addition of two high-octane components (methanol and reformate) to a toluene primary reference fuel improved the pre-ignition resistance, one high-RON fuel experienced runaway pre-ignition at relatively low boost pressure levels. A comparison of RON 96 blends showed that the fuel composition can affect pre-ignition resistance at constant RON.
Technical Paper

Experimental and Numerical Assessment of Engine Performance Using Cyclopentanone and Anisole as Neat Fuels and as Blends with Gasoline

2023-09-29
2023-32-0050
The dilution of the cylinder charge using excess air enables both an increase in the net indicated efficiency and a decrease in the engine-out emissions of nitrogen oxides. The maximum excess air dilution capability in a spark-ignition engine depends on both the ignition of the charge and the flame propagation. These two aspects can be influenced by the fuel properties, which draw attention to the laminar burning velocity of alternative fuels to extend the lean limit. Cyclopentanone and anisole show promising values regarding the laminar burning velocity. However, there is a lack of engine investigations using these two fuels. To this end, both fuels were assessed in an engine application using experimental and numerical investigations. Cyclopentanone and anisole were investigated as neat components and as mixtures with conventional gasoline fuel, resulting in seven investigated fuels.
Technical Paper

Experimental Studies on the Use of Methanol-Butanol Blends in a Hot Surface Ignition Engine

2023-04-11
2023-01-0316
The property of methanol to surface ignite can be exploited to use it in a diesel engine even though its cetane number is very low. Poor lubricity of methanol is still an issue and special additives are needed in order to safeguard the injection system components. In this work a common rail three cylinder, turbocharged diesel engine was run in the glow plug based hot surface ignition mode under different injection strategies with methanol as the main fuel in a blend with n-butanol. n-Butanol was used mainly to enhance the viscosity and lubricity of the blend. The focus was on the effect of different injection strategies. Initially three blends with methanol to n-butanol mass ratios of 60:40, 70:30 and 80:20 were evaluated experimentally with single pulse fuel injection. Subsequently the selected blend of 70:30 was injected as two pulses (with almost equal mass shares) with the gap between them and their timing being varied.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

Experimental Studies on a Small-Bore Port Fuel Injected SI Engine Operated on Neat Methanol and Comparison with Gasoline

2022-06-14
2022-37-0017
In many Asian countries a significant automobile market share is held by two and three wheelers. Generally, cost and simplicity considerations limit the performance and emission levels of small engines. Methanol is an excellent alternative fuel for SI engines due to its high-octane number, high flame speed, presence of oxygen in its molecule and thus can be used to enhance the performance of small engines. However, use of neat methanol in SI engines poses constraints due to low energy density and poor vaporization characteristics. Also, the effectiveness of methanol as a fuel has still to be thoroughly investigated in small-bore SI engines in order to assess its potential. In this work, a small-bore 200cc three-wheeler automotive engine was modified to operate in the port fuel injection mode with neat methanol as the fuel.
Technical Paper

Evaluation of Low-Pressure EGR System on NOx Reduction Potential of a Supercharged LCR Single-Cylinder Diesel Engine

2022-03-29
2022-01-0447
Supercharging a single-cylinder diesel engine has proved to be a viable methodology to reduce engine-out emissions and increase full-load torque and power. The increased air availability of the supercharger (SC) system helps to inject more fuel quantity that can improve the engine's full-load brake mean effective pressure (BMEP) without elevating soot emissions. However, the increased inlet temperature of the boosted air and the availability of excess oxygen can pose significant challenges to contain oxides of nitrogen (NOx) emissions. Hence, it is important to investigate the potential NOx reduction options in supercharged diesel engines. In the present work, the potential of low-pressure exhaust gas recirculation (LP EGR) was evaluated in a single-cylinder supercharged diesel engine for its benefits in NOx emission reduction and impact on other criteria emissions and brake specific fuel consumption (BSFC).
Technical Paper

A Comparison of Different Warm-up Technologies on Transient Emission Characteristics of a Low-Compression Ratio Light-duty Diesel Engine

2022-03-29
2022-01-0482
It is well established that reducing the compression ratio (CR) of a diesel engine leads to a significant increase in hydrocarbon (HC) and carbon monoxide (CO) emissions, especially in cold and transient conditions. Hence, it is essential to find new strategies to reduce the HC and CO emissions of a low compression ratio (LCR) diesel engine in transient conditions. In the present work, a detailed evaluation of different warm-up technologies was conducted for their effects on transient emissions characteristics of a single-cylinder naturally aspirated LCR diesel engine. For this purpose, the engine was coupled to an instrumented transient engine dynamometer setup. A transient cycle of 160 seconds with starting, idling, speed ramp-up and load ramp-up was defined, and the engine was run in automatic mode by the dynamometer. The experiments were conducted by overnight soaking the engine at a specified temperature of 25 deg.C.
Technical Paper

Simulation Studies on Glow Plug Assisted Neat Methanol Combustion in a Diesel Engine

2022-03-29
2022-01-0519
Methanol has a very low cetane number but it can be used in the neat form in a glow plug based hot surface ignition (HSI) engine at CI engine compression ratios. A CFD simulation model of a glow plug assisted methanol HSI engine was developed and validated using experimental data reported in literature. A study on the effect of single and multipulse injection of methanol, glow plug surface temperature, injection pressure and effect of shielding it were conducted by applying the model on to a three cylinder neat methanol HSI engine. A glow surface temperature of 1273 K was found to be sufficient for ignition of methanol at 50% load while the distance between the glow plug and the injector affected the ignition delay. The sprays were ignited sequentially starting from the one closest the glow plug which resulted in extended combustion. Injecting methanol in double pulses reduced the Maximum Rate of Pressure Rise (MRPR).
Technical Paper

Model Based Evaluation of Parallel Hybrid Concepts for a Scooter for Reduced Fuel Consumption and Emissions

2022-03-29
2022-01-0665
Hybrid drive trains have to be cost effective for implementation in small two-wheelers especially scooters which constitute the majority of the market in several Asian countries. Integrating an electric motor with the conventional IC Engine drivetrain while retaining the CVT (Continuously Variable Transmission) is a cost-effective proposition. Such a development will need accounting for the behaviour of the engine, electrical drive and the belt driven CVT. A map-based engine model and a physics-based CVT model were developed in Simulink and validated with experimental data on the WMTC drive-cycle. A steady state map-based emission model and a motor model were also used. Simulations were performed on two parallel hybrid layouts namely P2 wherein the electric motor was placed before the CVT and P3 where the motor was placed in the final drive after the CVT while retaining the base 110 cc scooter powertrain.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Transient Emission Characteristics of a Light Duty Commercial Vehicle Powered by a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1181
Adopting a low compression ratio (LCR) is a viable approach to meet the stringent emission regulations since it can simultaneously reduce the oxides of nitrogen (NOx) and particulate matter (PM) emissions. However, significant shortcomings with the LCR approach include higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions and fuel economy penalties. Further, poor combustion stability of LCR engines at cold ambient and part load conditions may worsen the transient emission characteristics, which are least explored in the literature. In the present work, the effects of implementing the low compression ratio (LCR) approach in a mass-production light-duty vehicle powered by a single-cylinder diesel engine are investigated with a major focus on transient emission characteristics.
Technical Paper

Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1166
The present work investigates the effects of lowering the compression ratio (LCR) from 18:1 to 14:1 and optimizing the fuel injection parameters across the operating range of a mass production light-duty diesel engine. The results were quantified for a regulatory Indian drive cycle using a one-dimensional simulation tool. The results show that the LCR approach can simultaneously reduce the oxides of nitrogen (NOx) and soot emissions by 28% and 64%, respectively. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions increased significantly by 305% and 119%, respectively, with a 4.5% penalty in brake specific fuel consumption (BSFC). Hence, optimization of fuel injection parameters specific to LCR operation was attempted. It was evident that advancing the main injection timing and reducing the injection pressure at low-load operating points can significantly help to reduce BSFC, HC and CO emissions with a slight increase in the NOx emissions.
Technical Paper

Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration

2021-04-06
2021-01-0424
Knock control is one of the most vital functions for safe and fuel-efficient operation of gasoline engines. However, all knock control strategies rely on accurate knock detection to operate the engine close to the optimal set point. Knock detection is usually calibrated on the engine test bench, requiring the engine to run with knocking combustion in a time-consuming multi-stage campaign. Model-based calibration significantly reduces calibration loops on the test bench. However, this method requires a large effort in building and validating the model, which is often limited by the lack of function documentation, available measurements or hardware representation. As the software models are often not available, function structures vary between manufacturers and sub model functions are often documented as black boxes. Hence, using the model-based approach is not always possible.
Technical Paper

Optimization of Clutch Characteristics to Improve the Launch Performance of a Sports-Utility Vehicle

2020-09-25
2020-28-0481
Vehicles with manual transmission are still the most preferred choice in emerging markets like India due to their benefits in cost, simplicity and fuel economy. However, the ever-increasing vehicle population and traffic congestion demand a smooth clutch operation and a comfortable launch behaviour of any manual transmission vehicle. In the present work, the launch performance of a sports-utility vehicle (SUV) equipped with dual mass flywheel (DMF) and self-adjusting technology (SAT) clutch could be improved significantly by optimizing the clutch system. The vehicle was observed to be having a mild judder during clutch release (with 0% accelerator pedal input) in a normal 1st gear launch in flat road conditions. An extensive experimental measurement at the vehicle level could reveal the launch judder is mainly due to the 1st order excitation forces created by the geometrical inaccuracy of the internal parts of the clutch system.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Optimization of the Bearing Oil Supply Concept of a High Power-Density Diesel Engine to Minimize Oil Pump Friction

2020-09-25
2020-28-0338
Reducing the mechanical friction of internal combustion engines could play a major role in improving the brake specific fuel consumption (BSFC). Hence, it is important to reduce the friction at every component and sub-system level. In the present work, the oil pump friction of a 1.5 liter 4-cylinder diesel engine is optimized by reducing the oil pump displacement volume by 20%. This could be achieved by adopting an optimized oil supply concept which could reduce the oil leakage through the main bearings and connecting rod bearings. A 1-dimensional oil flow simulation was carried out to predict the oil flow distribution across the engine for different speeds. The results indicate that the oil leakage through the main bearings and connecting rod bearings contribute to ~25% of the total oil flow requirement of the engine. In a conventional oil supply concept, the big-end bearing of each connecting rod is connected to the adjacent main bearing through an internal oil hole.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
X