Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Emissions Benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions

2020-04-14
2020-01-0302
This work explores the effectiveness of common rail fuel injectors equipped with Grouped Hole Nozzles (GHNs) in aiding the mixing process and reducing particulate matter (PM) emissions of Conventional Diesel Combustion (CDC) engines, while maintaining manageable Oxides of Nitrogen (NOx) levels. Parallel (pGHN), converging (cGHN) and diverging (dGHN) - hole GHNs were studied and the results were compared to a conventional, single hole nozzle (SHN) with the same flow area. The study was conducted on a single cylinder medium-duty engine to isolate the effects of the combustion from multi-cylinder effects and the conditions were chosen to be representative of a typical mid-load operating point for an on-road diesel engine. The effects of injection pressure and the Start of Injection (SOI) timing were explored and the tradeoffs between these boundary conditions are examined by using a response surface fitting technique, to identify an optimum operating condition.
Journal Article

System and Second Law Analysis of the Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion

2018-04-03
2018-01-0264
Dual-fuel reactivity controlled compression ignition (RCCI) combustion is a promising method to achieve high efficiency with near-zero NOx and soot emissions; however, the requirement to carry two fuels on board limits practical application. Advancements in catalytic reforming have demonstrated the ability to generate syngas (a mixture of CO and hydrogen) from a single hydrocarbon stream. This syngas mixture can then be used as the low reactivity fuel stream to enable single fuel RCCI combustion. The present effort uses a combination of engine experiments and system level modeling to investigate reformed fuel RCCI combustion. The impact of reformer composition is investigated by varying the syngas composition from 10% H2 to approximately 80% H2. The results of the investigation show that reformed fuel RCCI combustion is possible over a wide range of H2/CO ratios.
Technical Paper

Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load

2018-04-03
2018-01-0898
Engine experiments were carried out on a heavy-duty single-cylinder engine to investigate the effects of Gasoline Compression Ignition on emissions and performance of a heavy-duty engine operating at a high load condition. Comparisons between gasoline fueled operation and diesel fueled operation are presented using a single, near top dead center injection. Although the fuel’s cetane numbers are very different, the combustion characteristics of the two fuels at high load are similar, with the gasoline-fueled case showing less than two crank angle degree longer ignition delay. Gasoline operation showed lower soot production at similar levels of NOx, initiating study of the impact of exhaust gas recirculation which spanned a range of NOx levels covering the range from minimal urea dosing to high urea dosing. A conventional soot-NOx tradeoff was found to exist with gasoline as exists with diesel.
Technical Paper

Reformed Fuel Substitution for Transient Peak Soot Reduction

2018-04-03
2018-01-0267
Advancements in catalytic reforming have demonstrated the ability to generate syngas (a mixture of CO and hydrogen) from a single hydrocarbon stream. This syngas mixture can then be used to replace diesel fuel and enable dual-fuel combustion strategies. The role of port-fuel injected syngas, comprised of equal parts hydrogen and carbon monoxide by volume was investigated experimentally for soot reduction benefits under a transient load change at constant speed. The syngas used for the experiments was presumed to be formed via a partial oxidation on-board fuel reforming process and delivered through gaseous injectors using a custom gas rail supplied with bottle gas, mounted in the swirl runner of the intake manifold. Time-based ramping of the direct-injected fuel with constant syngas fuel mass delivery from 2 to 8 bar brake mean effective pressure was performed on a multi-cylinder, turbocharged, light-duty engine to determine the effects of syngas on transient soot emissions.
Technical Paper

Numerical Optimization of the Combustion System of a HD Compression Ignition Engine Fueled with DME Considering Current and Future Emission Standards

2018-04-03
2018-01-0247
A genetic algorithm (GA) optimization methodology is applied to the design of the combustion system of a heavy-duty (HD) Diesel engine fueled with dimethyl ether (DME). The study has two objectives, the optimization of a conventional diffusion-controlled combustion system aiming to achieve US2010 targets and the optimization of a stoichiometric combustion system coupled with a three way catalyst (TWC) to further control NOx emissions and achieve US2030 emission standards. These optimizations include the key combustion system related hardware, bowl geometry and injection nozzle design as input factors, together with the most relevant air management and injection settings. The GA was linked to the KIVA CFD code and an automated grid generation tool to perform a single-objective optimization. The target of the optimizations is to improve net indicated efficiency (NIE) while keeping NOx emissions, peak pressure and pressure rise rate under their corresponding target levels.
Technical Paper

Investigating Air Handling Requirements of High Load Low Speed Reactivity Controlled Compression Ignition (RCCI) Combustion

2016-04-05
2016-01-0782
Past research has shown that reactivity controlled compression ignition (RCCI) combustion offers efficiency and NOx and soot advantages over conventional diesel combustion at mid load conditions. However, at high load and low speed conditions, the chemistry timescale of the fuel shortens and the engine timescale lengthens. This mismatch in timescales makes operation at high load and low speed conditions difficult. High levels of exhaust gas recirculation (EGR) can be used to extend the chemistry timescales; however, this comes at the penalty of increased pumping losses. In the present study, targeting the high load - low speed regime, computational optimizations of RCCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The two fuels used for the study were gasoline (low reactivity) and diesel (high reactivity).
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Investigation of the Combustion Instability-NOx Tradeoff in a Dual Fuel Reactivity Controlled Compression Ignition (RCCI) Engine

2015-04-14
2015-01-0841
The tradeoff between NOx emissions and combustion instability in an engine operating in the dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion mode was investigated using a combination of engine experiments and detailed CFD modeling. Experiments were performed on a single cylinder version of a General Motors/Fiat JTD 1.9L four-cylinder diesel engine. Gasoline was injected far upstream of the intake valve using an air assisted injector and fuel vaporization system and diesel was injected directly into the cylinder using a common rail injector. The timing of the diesel injection was swept from −70° ATDC to −20° ATDC while the gasoline percentage was adjusted to hold the average combustion phasing (CA50) and load (IMEPg) constant at 0.5° ATDC and 7 bar, respectively. At each operating point the variation in IMEP, peak PRR, and CA50 was calculated from the measured cylinder pressure trace and NOx, CO, soot and UHC were recorded.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Technical Paper

High Speed Dual-Fuel RCCI Combustion for High Power Output

2014-04-01
2014-01-1320
In recent years society's demand and interest in clean and efficient internal combustion engines has grown significantly. Several ideas have been proposed and tested to meet this demand. In particular, dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion has demonstrated high thermal efficiency, and low engine-out NOx, and soot emissions. Unlike homogeneous charge compression ignition (HCCI) combustion, which solely relies on the chemical kinetics of the fuel for ignition control, RCCI combustion has proven to provide superior combustion controllability while retaining the known benefits of low emissions and high thermal efficiency of HCCI combustion. However, in order for RCCI combustion to be adopted as a high efficiency and low engine-out emission solution, it is important to achieve high-power operation that is comparable to conventional diesel combustion (CDC).
Technical Paper

Computational Investigation of Low Load Operation in a Light-Duty Gasoline Direct Injection Compression Ignition [GDICI] Engine Using Single-Injection Strategy

2014-04-01
2014-01-1297
The use of gasoline in a compression ignition engine has been a research focus lately due to the ability of gasoline to provide more premixing, resulting in controlled emissions of the nitrogen oxides [NOx] and particulate matter. The present study assesses the reactivity of 93 RON [87AKI] gasoline in a GM 1.9L 4-cylinder diesel engine, to extend the low load limit. A single injection strategy was used in available experiments where the injection timing was varied from −42 to −9 deg ATDC, with a step-size of 3 deg. The minimum fueling level was defined in the experiments such that the coefficient of variance [COV] of indicated mean effective pressure [IMEP] was less than 3%. The study revealed that injection at −27 deg ATDC allowed a minimum load of 2 bar BMEP. Also, advancement in the start of injection [SOI] timing in the experiments caused an earlier CA50, which became retarded with further advancement in SOI timing.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Journal Article

Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion

2013-04-08
2013-01-1678
The focus of the present study was to characterize the fuel reactivity of high octane number fuels (i.e., low fuel reactivity), namely gasoline, ethanol, and methanol when mixed with cetane improvers under lean, premixed combustion conditions. Two commercially available cetane improvers, 2-ethylhexyl nitrate and di-tert-butyl peroxide, were used in the study. First, blends of the primary reference fuels iso-octane and n-heptane were port injected under fixed operating conditions. The resulting combustion phasings were used to generate effective PRF number maps. Then, blends of the aforementioned base fuels and cetane improvers were tested under the same lean premixed conditions as the PRF blends. Based on the combustion phasing results of the base fuel and cetane improver mixture, the effective PRF number, or octane number, could be determined.
Technical Paper

Particle Size and Number Emissions from RCCI with Direct Injections of Two Fuels

2013-04-08
2013-01-1661
Many concepts of premixed diesel combustion at reduced temperatures have been investigated over the last decade as a means to simultaneously decrease engine-out particle and oxide of nitrogen (NO ) emissions. To overcome the trade-off between simultaneously low particle and NO emissions versus high "diesel-like" combustion efficiency, a new dual-fuel technique called Reactivity Controlled Compression Ignition (RCCI) has been researched. In the present study, particle size distributions were measured from RCCI for four gasoline:diesel compositions from 65%:35% to 84%:16%, respectively. Previously, fuel blending (reactivity control) had been carried out by a port fuel injection of the higher volatility fuel and a direct in-cylinder injection of the lower volatility fuel. With a recent mechanical upgrade, it was possible to perform injections of both fuels directly into the combustion chamber.
Technical Paper

A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations

2013-04-08
2013-01-1099
A comprehensive biodiesel combustion model is presented for use in multi-dimensional engine simulations. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. Previously, a detailed mechanism for methyl decanoate and methyl-9-decenoate was reduced from 3299 species to 85 species to represent the components of biodiesel fuel. In this work, a second reduction was performed to further reduce the mechanism to 69 species. Steady and unsteady spray simulations confirmed that the model adequately reproduced liquid penetration observed in biodiesel spray experiments. Additionally, the new model was able to capture expected fuel composition effects with low-volatility components and fuel blend sprays penetrating further.
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
X