Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Estimating Battery State-of-Charge using Machine Learning and Physics-Based Models

2023-04-11
2023-01-0522
Lithium-ion and Lithium polymer batteries are fast becoming ubiquitous in high-discharge rate applications for military and non-military systems. Applications such as small aerial vehicles and energy transfer systems can often function at C-rates greater than 1. To maximize system endurance and battery health, there is a need for models capable of precisely estimating the battery state-of-charge (SoC) under all temperature and loading conditions. However, the ability to perform state estimation consistently and accurately to within 1% error has remained unsolved. Doing so can offer enhanced endurance, safety, reliability, and planning, and additionally, simplify energy management. Therefore, the work presented in this paper aims to study and develop experimentally validated mathematical models capable of high-accuracy battery SoC estimation.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Journal Article

Experimental and Analytical Study of Temperature Swing Piston Coatings in a Medium-Duty Diesel Engine

2022-03-29
2022-01-0442
The use of Thermal Barrier Coatings (TBCs) has been shown to be a promising technology to improve internal combustion engine efficiencies by reducing heat rejection to the coolant and oil. In recent studies, temperature swing coatings that have simultaneously low volumetric heat capacity and low thermal conductivity have been shown to be particularly promising in this regard. In this study, a traditional and a newer swing coating are applied to the piston of an on-road medium-duty diesel engine to assess the benefits of their use. An analytical wall temperature model is coupled to the 1-D engine simulation software GT-POWER and predictions of wall temperature, heat transfer and chemical heat release rate are presented. The swing coating is found to yield an ~1.2% efficiency benefit at the highest load condition studied alongside an 80°C improvement in exhaust temperature at the lowest load condition studied compared to a reference uncoated piston.
Technical Paper

A Study of the Effect of Electronic Fuel Injection on the CFR F5 Cetane Rating Engine

2020-09-15
2020-01-2115
At recent American Society for Testing and Materials (ASTM) Subcommittee D02.01 meetings, committee members and attendees from the petroleum industry have reiterated a longstanding desire to see precision improvements to the ASTM D613 Standard Test Method for Cetane Number of Diesel Fuel Oil. The existing ASTM D613 precision limits were calculated using ASTM National Exchange Group (NEG) monthly test data from the mid-1970s through the early 1990s. Over the past few decades, many detailed studies were performed to identify and better understand the shortcomings of the cetane method (both engine equipment and instrumentation). Many of these studies concluded that inconsistent combustion is the main contributing factor behind the lack of precision in the cetane number method, followed by shortcomings in the instrumentation used to measure ignition delay.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines

2019-04-02
2019-01-0228
A new generation of low heat capacitance Thermal Barrier Coatings (TBCs) has been developed under U.S. Dept. of Energy / Advanced Research Projects Agency - Energy (ARPA-E) sponsored research. The TBCs developed under this project have significantly lower thermal conductivity of < 0.35 W/m-K, thermal heat capacitance of < 500 kJ/m3-K, and density of <0.35 g/cm3. Two different binder types were used for thermal barrier coatings applied by High Velocity Low Pressure (HVLP) spraying to the piston, cylinder head, and valve combustion surfaces of a small natural gas engine. The effects of thermal barrier coatings on engine efficiency and knock characteristics were studied in a small, high compression ratio, spark-ignition, internal combustion engine operating on methane number fuels from 60 to 100. The new TBCs with low thermal conductivity and low thermal heat capacities have been shown to increase overall engine efficiency through reduced heat transfer to the piston and cylinder head.
Technical Paper

Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load

2018-04-03
2018-01-0898
Engine experiments were carried out on a heavy-duty single-cylinder engine to investigate the effects of Gasoline Compression Ignition on emissions and performance of a heavy-duty engine operating at a high load condition. Comparisons between gasoline fueled operation and diesel fueled operation are presented using a single, near top dead center injection. Although the fuel’s cetane numbers are very different, the combustion characteristics of the two fuels at high load are similar, with the gasoline-fueled case showing less than two crank angle degree longer ignition delay. Gasoline operation showed lower soot production at similar levels of NOx, initiating study of the impact of exhaust gas recirculation which spanned a range of NOx levels covering the range from minimal urea dosing to high urea dosing. A conventional soot-NOx tradeoff was found to exist with gasoline as exists with diesel.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine

2017-03-28
2017-01-0741
In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine

2016-10-17
2016-01-2340
An experimental study is carried out to investigate the coupling between dual loop EGR (DL-EGR) and variable geometry turbocharger (VGT) on a heavy-duty commercial diesel engine under different operating conditions and inlet conditions. The effects of VGT rack position and high-pressure (HP) proportion in DL-EGR on engine performance and emissions are studied. The boosting system is a series 2-stage turbocharger with a VGT as the HP-stage. The HP-Proportion in DL-EGR is swept from 0% to 100% while several intake pressure values and EGR rates are fixed by adjusting the VGT position. Results demonstrate that the VGT and HP EGR both have great influence on the exhaust enthalpy and turbocharger efficiency. The exhaust enthalpy and the intake demand have great influence on the DL-EGR split strategy.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Numerical Study of the RCCI Combustion Processes Fuelled with Methanol, Ethanol, n-Butanol and Diesel

2016-04-05
2016-01-0777
In the current, numerical study RCCI combustion and emission characteristics using various fuel strategies are investigated, including methanol, ethanol, n-butanol and gasoline as the low reactivity fuel, and diesel fuel as the high reactivity fuel. A reduced Primary Reference Fuel (PRF)-alcohol chemical kinetic mechanism was coupled with a computational fluid dynamic (CFD) code to predict RCCI combustion under various operating conditions. The results show that a higher quantity of diesel was required to maintain the same combustion phasing with alcohol-diesel fuel blends, and the combustion durations and pressure rise rates of methanol-diesel (MD) and ethanol-diesel (ED) cases were much shorter and higher than those of gasoline-diesel (GD) and n-butanol-diesel (nBD) cases. The simulations also investigated the sensitivities of the direct injection strategies, intake temperature and premixed fuel ratio on RCCI combustion phasing control.
Technical Paper

Investigating Air Handling Requirements of High Load Low Speed Reactivity Controlled Compression Ignition (RCCI) Combustion

2016-04-05
2016-01-0782
Past research has shown that reactivity controlled compression ignition (RCCI) combustion offers efficiency and NOx and soot advantages over conventional diesel combustion at mid load conditions. However, at high load and low speed conditions, the chemistry timescale of the fuel shortens and the engine timescale lengthens. This mismatch in timescales makes operation at high load and low speed conditions difficult. High levels of exhaust gas recirculation (EGR) can be used to extend the chemistry timescales; however, this comes at the penalty of increased pumping losses. In the present study, targeting the high load - low speed regime, computational optimizations of RCCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The two fuels used for the study were gasoline (low reactivity) and diesel (high reactivity).
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

2015-09-06
2015-24-2518
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Technical Paper

A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation

2015-09-01
2015-01-1958
In order to further study the effects of air and EGR dilution on the fuel economy improvement of natural gas engines under the premise of meeting EU6 legislation, a comparison between stoichiometric operation with EGR and lean burn operation with and without EGR has been conducted at 1600rpm 50% and 75% load. The conversion efficiencies of the catalysts for both NOx and CH4 emissions are assumed at 90% for lean burn operation. Experiment results indicate that under the condition of meeting both NOx and CH4 predetermined engine-out emissions limits for EU6 legislation, lean operation with a small fraction of EGR dilution enables more advanced combustion phasing compared to pure lean operation, which results in much better fuel economy, thus further improvement compared to stoichiometric operation is achieved.
Technical Paper

Effects of Fuel Physical and Chemical Properties on Combustion and Emissions on Both Metal and Optical Diesel Engines and on a Partially Premixed Burner

2015-09-01
2015-01-1918
Effects of fuel physical and chemical properties on combustion and emissions were investigated on both metal and optical diesel engines. The new generation oxygenated biofuels, n-butanol and DMF (2,5-dimethylfuran) were blended into diesel fuel with 20% volume fraction and termed as Butanol20 and DMF20 respectively. The exhaust gas recirculation (EGR) rates were varied from zero to ∼60% covering both conventional and low temperature combustion. Meanwhile, the reference fuels such as n-heptane, cetane, and iso-cetane were also used to isolate the effects of different fuel properties on combustion and emissions. In addition, to clarify the effects of oxygenated structures on combustion and emissions, a fundamental partially premixed burner was also used. Results based on metal and optical diesel engines show that fuel cetane number is the dominated factor to affect the auto-ignition timing and subsequent combustion process.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
X