Refine Your Search

Topic

Search Results

Technical Paper

Knowledge of the Phase is Crucial for the Analysis of All Dynamic Hydraulic Systems

2023-06-26
2023-01-1207
For metrological traceability of pressure sensors, static calibration procedures are standard. If these sensors are used in dynamic systems, unexpected phenomena or deviations occur in the recorded signal characteristics. By setting up a dynamic pressure calibration facility, it is possible to investigate this dynamic behavior and learn about the interactions between sensor and investigated system. To be able to identify the disturbing influences and interactions occurring during calibration and in subsequent measurement use, it is necessary to increase the existing understanding of the system. In the context of the contribution, the calibration procedure used, its properties such as repeatability, reproducibility as well as the system interaction of the influencing variables are analyzed. Special attention is paid to the effects of varying gas content in the calibration medium, its influence on the system and on the observed phenomena occurring.
Technical Paper

Methods for the Holistic Evaluation of the Fuel Influence on Gasoline Engine Combustion

2023-06-26
2023-01-1210
The proportion of new registrations with battery-electric and hybrid powertrains is rising steadily. This shows the strong trend in the automotive industry away from conventional powertrains with internal combustion engines. The aim is to reduce the transport sector's contribution to CO2 emissions. However, it should be noted that this only applies when renewable energy is used. Studies show the relevance of the system boundaries under consideration, which makes the application of Life Cycle Assessment indispensable. According to these studies, the various types of powertrains differ only slightly in their greenhouse gas impact. Rather, the energy supply chain plays a significant role. Moreover, a ban on combustion engines would lead to an additional increase in cumulative CO2 emissions. An important aspect on the way to sustainable mobility solutions is addressing the existing fleet.
Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
Technical Paper

Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization

2022-06-14
2022-37-0018
The new CO2 and emissions limits imposed to European manufacturers require the adoption of different innovative solutions, such as the use of potentially CO2-neutral synthetic fuels alongside a tailored development of the internal combustion engine, as an excellent solution to accompany the hybridization of vehicles. Dr.Ing. h.c. F. Porsche AG and FKFS, already partners for the development of engines with eFuels, propose a new study carried out on a research engine, investigating the combination of Porsche synthetic gasoline (POSYN) with an engine with millerization and passive pre-chamber. The use of CO2-neutral fuels allow for an immediate reduction in CO2 emissions from all cars already on the market, particularly since Porsche is one of the manufacturers whose cars remain in use for the longest time. The data collected on a single-cylinder engine test bench, for different fuels, with conventional spark plug are used as input for the calibration of 3D-CFD simulations.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

An Operating Strategy Approach for Serial/Parallel Hybrid Electric Vehicles

2022-06-14
2022-37-0016
In this paper, a serial/parallel hybrid electric vehicle with a 17 kWh battery and 400 V voltage level is simulated. The vehicle is a C-segment vehicle, which has optimized driving resistances. It also has an external recharge possibility, which enables fully electric driving. The vehicle uses an Otto-engine concept as well as two electric motors. One motor is a permanent magnet synchronous motor and can be used as traction motor or generator, the other one is an induction motor used as main traction motor for the vehicle. The vehicle uses a 2-speed gearbox, where the electric motors are mounted in P2-configuration. To reach optimal results for the fuel consumption, an operating strategy based on the Equivalent Consumption Minimization Strategy (ECMS) is introduced and implemented in the vehicle simulation.
Technical Paper

Knock Frequency-Based Knock Control

2022-06-07
2022-01-5043
Knocking is still one of today’s major limitations regarding efficiency-increasing measures for SI combustion engines. Due to the complex stochastic nature of the phenomenon, not only prediction and consideration within the engine development is of relevance. A further challenge is control of the phenomenon during engine operation, with the aim of maximizing the efficiency while preventing engine damage and maintaining the driver comfort. Conventional knock control is characterized by detecting knock events and subsequently adjusting the spark timing depending on whether knock was detected. This paper proposes a new knock control concept based on the prediction and direct control of the knock frequency, compared to the conventional reactive and indirect control of the knock frequency. For the prediction of the knock frequency, a calculation approach based on three different parameters is utilized.
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

Experimental and Numerical Investigation for Improved Mixture Formation of an eFuel Compared to Standard Gasoline

2021-09-05
2021-24-0019
The increasingly stringent targets for the automotive industry towards sustainability are being addressed not only with the improvement of engine efficiency, but also with growing research about alternative, synthetic, and CO2-neutral fuels. These fuels are produced using renewable energy sources, with the goal of making them CO2-neutral and also to reduce a significant amount of engine emissions, especially particulate matter (PM) and total hydrocarbon (THC). The objective of this work is to study the behavior and the potential of an eFuel developed by Porsche, called POSYN (POrscheSYNthetic) and to compare it with a standard gasoline.
Technical Paper

New Criteria for 0D/1D Knock Models to Predict the Knock Boundary for Different Gasoline Fuels

2021-04-06
2021-01-0377
As engine knock limits the efficiency of spark ignition engines and consequently further reduction of CO2 emissions, SI engines are typically designed to operate at the knock boundary. Therefore, a precise knock model is necessary to consider this phenomenon in an engine process simulation. The basis of the introduced 0D/1D knock model is to predict when the unburnt mixture auto-ignites, since auto-ignitions precede knocking events. The knock model further needs to evaluate the auto-ignition, because not every auto-ignition results in engine knock. As the introduced model’s prediction of the auto-ignition onset is already validated at extensive variations of operating conditions, this publication focusses on its evaluation. For this, two new, independent criteria are developed that take the pre-reactions of the unburnt mixture before the start of combustion into account to calculate a respective threshold for the auto-ignition onset at the knock boundary.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Investigation of High Internal Residual Gas Rates in Rich Operating Mode for Diesel Lean NOx Trap Regeneration

2021-04-06
2021-01-0592
For the regeneration of the Lean NOx Trap (LNT) a rich air-to-fuel ratio must be generated. This operation is very critical and has low combustion stability, especially in low load operation. A certain minimum engine load is always required for the regeneration phase. In the Real Driving Emissions this minimum engine load can be undercut over a long period of time. Hence, a reliable regeneration phase is not possible. The aim of these investigations is to extend the engine map range in which regeneration is possible towards lower loads. This is done by means of a variable valve train with second exhaust valve lift, which increases the internal residual gas amount. This in turns increases the temperature at start of combustion in the cylinder. Especially at low load and low combustion stability this leads to a stabilization of the combustion process. This advantage in combustion stability can be used for a reduction of the minimum engine load.
Technical Paper

Investigation of the Piston Pin Movement, Rotation and Oil Filling Ratio of the Piston Boss

2021-04-06
2021-01-0646
The general objectives of this research are the identification of relevant factors that influence the movement and rotation behavior of the piston pin and to characterize the oil filling ratio in the piston boss. For this purpose, an experimental measurement campaign with load and speed variation is carried out on an engine test bench. The key challenge is the implementation of the extensive measurement technology on a series V6 engine. For the detection of the radial piston pin movement in stroke and transversal direction four eddy current sensors are used, two per direction. With a combined measuring principle the oil filling ratio can be determinated. Therefore two additional capacitive sensors are placed between the eddy current sensors. Depending on the hydrodynamic friction conditions in the piston pin bearing as well as the thermal and mechanical boundary conditions, the pivoting movement of the connecting rod initiates the rotation of the piston pin.
Technical Paper

Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels

2021-04-06
2021-01-0381
Engine knock is limiting the efficiency of spark ignition engines and consequently further reduction of CO2 emissions. Thus, an combustion process simulation needs a well working knock model to take this phenomenon into account. As knocking events result from auto-ignitions, the basis of a knock model is the accurate modeling of the latter. For this, the introduced 0D/1D knock model calculates the Livengood-Wu integral to estimate the state of the pre-reactions of the unburnt mixture and considers the two-stage auto-ignition of gasoline fuels, which occurs at specific boundary conditions. The model presented in this publication is validated against measurement data of a single cylinder engine. For this purpose, more than 12 000 knocking working cycles are investigated, covering extensively varied operating conditions for a wide-ranging validation.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

The Isochoric Engine

2020-04-14
2020-01-0796
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

Predicting the Influence of Charge Air Temperature Reduction on Engine Efficiency, CCV and NOx-Emissions of a Large Gas Engine Using a SI Burn Rate Model

2020-04-14
2020-01-0575
In order to meet increasingly stringent exhaust emission regulations, new engine concepts need to be developed. Lean combustion systems for stationary running large gas engines can reduce raw NOx-emissions to a very low level and enable the compliance with the exhaust emission standards without using a cost-intensive SCR-aftertreatment system. Experimental investigations in the past have already confirmed that a strong reduction of the charge air temperature even below ambient conditions by using an absorption chiller can significantly reduce NOx emissions. However, test bench operation of large gas engines is costly and time-consuming. To increase the efficiency of the engine development process, the possibility to use 0D/1D engine simulation prior to test bench studies of new concepts is investigated using the example of low temperature charge air cooling. In this context, a reliable prediction of engine efficiency and NOx-emissions is important.
X