Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

The Potential of Hydrogen High Pressure Direct Injection Toward Future Emissions Compliance: Optimizing Engine-Out NOx and Thermal Efficiency

2024-06-12
2024-37-0005
By building on mature internal combustion engine (ICE) hardware combined with dedicated hydrogen (H2) technology, the H2-ICE has excellent potential to accelerate CO2 reduction. H2-ICE concepts can therefore contribute to realizing the climate targets in an acceptable timeframe. In the landscape of H2-ICE combustion concepts, High Pressure Direct Injection (HPDI™) is an attractive option considering its high thermal efficiency, wide load range and its applicability to on-road as well as off-road heavy-duty equipment. Still, H2-HPDI is characterized by diffusion combustion, giving rise to significant NOx emissions. In this paper, the potential of H2-HPDI toward compliance with future emissions legislation is explored on a 1.8L single-cylinder research engine. With tests on multiple load-speed points, Exhaust Gas Recirculation (EGR) was shown to be an effective measure for reducing engine-out NOx, although at the cost of a few efficiency points.
Technical Paper

A Numerical Study of the Laminar Flame Speed of Hydrogen/Ammonia Mixtures under Engine-like Conditions

2024-06-12
2024-37-0020
In the effort to achieve the goal of a climate-neutral transportation system, the use of hydrogen and other synthetic fuels plays a key role. As battery electric vehicles become more widespread, e-fuels could be used to defossilize the hard-to-electrify transportation sectors and to store energy produced from renewable and non-continuous energy sources. Among e-fuels, hydrogen and ammonia are very attractive because they are carbon-neutral and their oxidation does not lead to any CO2 emissions. Furthermore, hydrogen/ammonia mixtures overcome the issues that arise as each of the two fuels is separately used. In the automotive sector, the use of either hydrogen, ammonia or their blends require a characterization of such mixtures under engine-like conditions, that is, at high pressures and temperatures. The aim of this work is to evaluate the Laminar Flame Speed (LFS) of hydrogen/ammonia mixtures by varying the thermodynamic conditions and the molar composition of the reactants.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Analytical and Experimental Evaluation of Seal Drag using Variety of Different Fluids

2024-06-01
2024-26-0423
The present study discusses about the determination of the Seal drag force in the application where elastomeric seal is used with metallic interface in the presence of different fluids. An analytical model was constructed to predict the seal drag force and experimental test was performed to check the fidelity of the analytical model. A Design of Experiment (DoE) was utilized to perform experimental test considering different factors affecting the Seal drag force. Statistical tools such as Test for Equal Variances and One way Analysis of Variance (ANOVA) were used to draw inferences for population based on samples tested in the DoE test. It was observed that Glycol based fluids lead to lubricant wash off resulting into increased seal drag force. Additionally, non-lubricated seals tend to show higher seal drag force as compared to lubricated seals. Keywords: Seal Drag, DoE, ANOVA
Technical Paper

Knockdown Factor Estimation of Stiffened Cylinders under Combined Loads - A Numerical Study

2024-06-01
2024-26-0417
Airframe section of rockets, missiles and launch vehicles are typically cylindrical in shape. The cylindrical shell is subjected to high axial load and an external pressure during its operation. The design of cylinders subjected to such loads is generally found to be critical in buckling. To minimize the weight of cylinders, it is typically stiffened with rings and stringers on the inner diameter to increase the buckling load factor. Conventionally the buckling load estimated by analytical or numerical means is multiplied by an empirical factor generally called Knockdown factor (kdf) to get the critical buckling load. This factor is considered to account for the variation between theory and experiment and is specified by handbooks or codes. In aerospace industry, NASA SP 8007 is commonly followed and it specifies the kdf as a lower bound fit curve for experimental data .
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Centrifugal Compressor Map Prediction Based on Geometrical Parameters with Invariant Coefficients

2024-04-24
2024-01-5056
In the present work, a new methodology for predicting the performance of centrifugal compressors is developed. The proposed method differs from existing methods found in literature by gathering principal losses in three parameters: two constants and one variable, which is a function of the compressor wheel geometrical characteristics. As those parameters are constants for a given centrifugal compressor, there is no need for additional corrective parameters in order to obtain coherent results. Indeed, the proposed methodology does not depend on the choice of the slip factor correlation for the prediction of the correct pressure ratio. However, the choice of slip factor influences the efficiency computation. The prediction of the compressor maps for two full stage centrifugal compressors is presented and they show good agreement while compared with manufacturer’s data obtained from gas stand measurements.
Technical Paper

Study on the Optimization of Sealing Environment of Cylinder Head Gasket

2024-04-09
2024-01-2833
Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket (MLS) to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. The current design of cylinder head gasket mainly evaluates the sealing performance in hot and cold state through finite element analysis. The sealing performance of cylinder head gasket is mainly determined by sealing pressure, fatigue and lateral movement in the joint, which have been widely studied [1]. However, no one has been involved in the study of factors affecting sealing pressure and lateral movement in the joint.
Technical Paper

Modeling and Validation of the Tire Friction on Wet Road

2024-04-09
2024-01-2307
In order to study the tire friction characteristics under wet skid surface, the “pseudo” hydrodynamic pressure bearing effect is used to be equivalent to the hydrodynamics of water film, and an advanced Lugre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The water hydroplaning dynamic tests were carried out for 285/70R19.5 tire under wet of different water film thickness and dry conditions, and the parameters of the advanced Lugre tire dynamic model were identified. The results show that the tire water-skiing model proposed in this paper can effectively simulate the friction characteristics of tires under different water film thicknesses. Under dry conditions, 0.5mm water film and 1mm water film road conditions, the relative errors of the maximum tire friction coefficient between the tested and advanced Lugre tire model are 1.11%, 0.12% and 0.16%, respectively.
Technical Paper

Elucidation of Sealing Mechanism of Novel Acrylate Liquid Based BluSealTM Wire Harness Splice Sealing Technology

2024-04-09
2024-01-2356
Unlike conventional heat shrink tubes or enclosure systems which only seals wires and splices on the outside, a novel Acrylate based sealing technology developed and introduced by Eurotech is a low viscosity fluid formulated to be applied to the splices either in liquid droplets or by dipping, utilizes fast capillary-wicking action and quick self-cure inside the wires to form a robust, cost effective, flexible, impenetrable seal to prevent moisture damage of wire harnesses and associated electrical components. This technology is an enabler of new wire harness architectures currently limited by the shortcomings of conventional sealing products such as heat shrink tubes which come up short when the splice configurations or geometries become too complex or difficult for sealing from the outside.
Technical Paper

Experimental Study on Engine Performance Fueled with Ammonia-Hydrogen Blend Ignited by Diesel Pilot

2024-04-09
2024-01-2365
The global energy crisis and drastic climate change are continuously promoting the implementation of sustainable energy sources. To meet the emission standards and carbon-neutrality targets in vehicle industry, ammonia is considered to be one of the promising carbon-neutral fuels. However, running the engines on high amounts of ammonia may lead to significantly high ammonia slip. This originates huge safety concerns. Therefore, hydrogen is added in certain ratio with ammonia to promote combustion and reduce ammonia slip. Furthermore, adding diesel as a pilot fuel further facilitates the combustion reactions. This experimental study investigated the effect of different ammonia-hydrogen blend ratios on in-cylinder pressure, heat release rate, cumulative heat release, indicated mean effective pressure (IMEP), indicated thermal efficiency (ITE), CA5 and CA50. This effect of blend ratios was tested for varied diesel pilot amounts and timings.
Technical Paper

Simulation Study of Cathode Spot Formation on Spark Plug Electrodes Leading to Electrode Erosion

2024-04-09
2024-01-2103
A multi-dimensional cathode spot generation model is proposed to study the interaction between the plasma arc and cathode surface of a spark plug during the ignition process. The model is focused on the instationary (high current) arc phase immediately following breakdown, and includes detailed physics for the phenomena during spot formation such as ion collision, thermal-field emission, and metal vaporization, to simulate the surface heat source, current density and surface pressure. The spot formation for a platinum cathode is simulated using the VOF (volume of fluid) model within FLUENT, where the local metal is melted and deformed by pressure differences on the surface. A random walk model has been integrated to consider the movement of the arc center, resulting in the formation of different types of spots.
Technical Paper

Study of the Connection between E-Machine and Gearbox of a Hybrid Powertrain

2024-04-09
2024-01-2592
As part of the development of its new powertrain consisting of two electric motors, a combustion engine and a gearbox, Renault SAS followed an original approach to achieve an assembly with an optimized, robust, and reliable link between the main electric motor and the gearbox. The running operation optimization as well as the high reliability is achieved by processing the following topics: filtration of vibrations and operating jolts; solving of tribological problems specific to splined connections, such as fretting corrosion and abrasive tooth wear; avoidance of potential seizure of elements with cyclic relative slippage under load; and eventually, control of wear and tear on the sealing and damping O-rings, which must accept oscillating translational movements at the same time as torque transfer. The aim of this article is to retrace the main steps taken to achieve the desired reliability and performance targets for this type of product.
Technical Paper

Effects of Rear Slant Angles on the Bi-Stable Behavior of the Ahmed Body

2024-04-09
2024-01-2522
The bi-stable phenomena of the Ahmed model were experimentally studied at different rear slant angles (31.8 °, 42 °, 50 °, 60 °, 75 °, 90°) and different Reynolds numbers (9.2 × 104, 1.84 × 105, 2.76 × 105). The analysis of pressure gradients both on the base and slant indicate that no bi-stable phenomena were observed at different Reynolds numbers when the slant angle was less than or equal to 50°. However, for the rear slant angles greater than or equal to 60°, the pressure gradients consistently shift between two preferred values at various Reynolds numbers, indicating the presence of bi-stable behavior in the spanwise direction. Therefore, the critical angle for the appearance of bi-stability in the Ahmed model lies within the range of 50° to 60°, and the existence of bistable behavior remains unaffected by the Reynolds number. As the slant angle increases, the switching rate decreases significantly until the angle is greater than 60°.
X