Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

After-Treatment Systems to Meet China NS VI, India BS VI Regulation Limits

2017-03-28
2017-01-0941
Future emissions regulations proposed for the Asian automotive industry (BS VI regulations for India and NS VI regulations for China) are strict and similar to EU VI regulations. As a result, they will require both advanced NOx control as well as advanced Particulate Matter (PM) control. This will drive implementation of full Catalyzed Diesel Particulate Filter (cDPF) and simultaneous NOx control using Selective Catalytic Reduction (SCR) technologies. In this work, we present the performance of various Diesel Oxidation Catalyst (DOC), cDPF, SCR and Ammonia slip catalyst (ASC) systems utilizing the World Harmonized Transient Cycle (WHTC). Aftertreatment Systems (ATS) required for both active and passive filter regeneration applications will be discussed. The sensitivity of key design parameters like catalyst technology, PGM loading, catalyst sizing to meet the regulation limits has been investigated.
Technical Paper

Heavy Duty Diesel Engine Emission Control to Meet BS VI Regulations

2017-01-10
2017-26-0125
The next generation advanced emission regulations have been proposed for the Indian heavy duty automotive industry for implementation from 2020. These BS VI emission regulations will require both advanced NOx control as well as advanced PM (Particulate Matter) control along with Particle Number limitations. This will require implementation of full DPF (Diesel Particulate Filter) and simultaneous NOx control using SCR technologies. DPF technologies have already been successfully implemented in Euro VI and US 10 HDD systems. These systems use low temperature NO2 based passive DPF regeneration as well as high temperature oxygen based active DPF regeneration. Effective DPF and DOC designs are essential to enable successful DPF regeneration (minimize soot loading in the DPF) while operating HDD vehicles under transient conditions. DOC designs are optimized to oxidize engine out NO into NO2, which helps with passive DPF regeneration.
Journal Article

Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines

2015-04-14
2015-01-0992
Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, while discussions are in progress for tightening NOx emissions from HD engines post 2020. This will require increasingly higher NOx conversions across the emission control system and will challenge the current aftertreatment designs. Typical 2010/2013 Heavy Duty systems include a diesel oxidation catalyst (DOC) along with a catalyzed diesel particulate filter (CDPF) in addition to the SCR sub-assembly. For future aftertreatment designs, advanced technologies such as cold start concept (dCSC™) catalyst, SCR coated on filter (SCRF® hereafter referred to as SCR-DPF) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversions, in combination with improved control strategies.
Technical Paper

Demonstration of SCR on a Diesel Particulate Filter System on a Heavy Duty Application

2015-04-14
2015-01-1033
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2013 Heavy Duty Diesel emission control systems include a DOC upstream of a catalyzed soot filter (CSF) which is followed by urea injection and the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, which would enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCRF® technology, hereafter referred to as SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging.
Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Technical Paper

Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines

2014-04-01
2014-01-1525
Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, which will require increasingly higher NOx conversion to meet emission regulations. For future aftertreatment designs, advanced technologies such as SCR coated on filter (SCRF®) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversion. In this work, different options were evaluated for achieving high NOx conversion. First, high performance NOx control catalysts were designed by using SCRF unit followed by additional SCR on high porosity substrates. Second, different control strategies were evaluated to understand the effect of reductant dosing strategy and thermal management on NOx conversion. Tests were carried out on a HD engine under transient test cycles.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

2014-04-01
2014-01-1588
Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

ExhAUST: DPF Model for Real-Time Applications

2011-09-11
2011-24-0183
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
Journal Article

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

2011-04-12
2011-01-1312
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2010 Heavy-Duty systems include a DOC along with a catalyzed soot filter (CSF) in addition to the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, to enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging. In this work, a system consisting of SCR-DPF was evaluated in comparison to the DOC + CSF components from a commercial 2010 DOC + CSF + SCR system on an engine with the engine EGR on (standard engine-out NOx) and off (high engine-out NOx).
Journal Article

An Evaluation of Particle Size Distributions and Particle Number-Based Reductions from Various PM Emission Control Technologies

2011-04-12
2011-01-0600
For diesel emission control technologies, reduction efficiencies of Particulate Matter (PM) control systems have been traditionally reported based on mass-based criteria. However, particle number-based criteria are now receiving increased attention. In this paper, results of real-time particle size distribution and number based evaluation of the effectiveness of multiple PM control technologies are reported on an HDD engine. An Engine Exhaust Particle Sizer (EEPS) was used for comparative analysis. The technologies that were evaluated included diesel oxidation catalysts (DOC), a DOC with an uncatalyzed wall-flow filter as a continuously regenerating diesel particulate filter (CR-DPF) system, a DOC with a catalytically coated wall-flow filter as a catalyzed CR-DPF (CCR-DPF), and a DOC with a partial filter as a continuously regenerating partial filter (CR-PF).
Technical Paper

Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications

2011-04-12
2011-01-1329
Since early 2010, most new medium- and heavy-duty diesel vehicles in the US rely on urea-based Selective Catalytic Reduction (SCR) technology for meeting the most stringent regulations on nitrogen oxides (NOx) emissions in the world today. Catalyst technologies of choice include Copper (Cu)- and Iron (Fe)-based SCR. In this work, the performances of Fe-SCR and Cu-SCR were investigated in the most commonly used DOC + CSF + SCR system configuration. Cu-SCR offered advantages over Fe-SCR in terms of low temperature conversion, NO₂:NOx ratio tolerance and NH₃ slip, while Fe-SCR demonstrated superior performance under optimized NO₂:NOx ratio and at higher temperatures. The Cu-SCR catalyst displayed less tolerance to sulfur (S) exposure. Reactor testing has shown that Cu-SCR catalysts deactivate at low temperature when poisoned by sulfur.
Technical Paper

Biodiesel Blend Emissions of a 2007 Medium Heavy Duty Diesel Truck

2010-10-05
2010-01-1968
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
Technical Paper

Emission Control Options to Achieve Euro IV and Euro V on Heavy Duty Diesel Engines

2008-01-09
2008-28-0021
The modern Diesel engine is one of the most versatile power sources available for mobile applications. The high fuel economy and torque of the Diesel engine has long resulted in global application for heavy-duty applications. Moreover, the high power and excellent driveability of today's turbo-charged small high-speed Diesel engines, coupled with their low CO2 emissions, has resulted in an increasing demand for Diesel powered light-duty vehicles. However, the demand for Diesel vehicles can only be realised if their exhaust emissions meet the increasingly stringent emissions legislation being introduced around the world. In the USA, both HDD and LDD vehicles are meeting strict emissions legislations since 2007 with the introduction of particle filters which will be further restricted from 2010 with the use of additional NOx contr5ol systems. In Europe, similar strict requirements are being implemented with Euro IV, Euro V and finally through Euro VI legislations.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Technical Paper

NOx and PM Reduction Using Combined SCR and DPF Technology in Heavy Duty Diesel Applications

2005-11-01
2005-01-3548
The application of oxidation catalyst and particulate filter technology for the reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO) emissions from heavy duty diesel engines has become an established practice. The design and performance of such systems have been commercially proven to the point that the application of these technologies is cost effective and durable. The application of an effective NOx reduction technology in heavy duty diesel applications is more complicated since there are no passive NOx reduction technologies that can be fit onto HDD vehicles. However, Selective Catalytic Reduction (SCR) systems using Urea injection to achieve NOx reduction have become the technology of choice in Europe and have been applied to achieve Euro IV emissions levels on new HDD vehicles. In addition, retrofit SCR emission control systems have also been developed that can provide high NOx reduction when applied on existing HDD vehicles.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit

2005-04-11
2005-01-1862
The retrofitting of diesel engines with oxidation catalyst and particulate filter technology for the reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO) emissions has become an established practice. The design and performance of such systems have been commercially proven to the point that the application of these technologies is a cost effective means for states to effectively meet pollution reduction goals. One of the reasons that these technologies are so widely applied is because they can be sized and fitted based on easily measurable vehicle parameters and published engine emission information. These devices generally work passively with basic temperature and back pressure monitoring devices being used to alert the operator to upset conditions. The application of an effective NOx reduction technology in similar retrofit installation, is more complicated. There are no passive NOx reduction technologies that can be retrofit onto HDD vehicles.
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

2004-10-25
2004-01-2959
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

A Study of the Effects of Fuel Type and Emission Control Systems on Regulated Gaseous Emissions from Heavy-Duty Diesel Engines

2004-03-08
2004-01-1085
The New York State Department of Environmental Conservation (DEC) and Environment Canada have jointly participated along with partners the New York City Metropolitan Transit Agency (MTA); Johnson Matthey, Environmental Catalysts & Technologies; Equilon Enterprises, LLC and Corning, Inc. in a project to evaluate the effect of various combinations of fuels and aftertreatment configurations on diesel emissions. Emissions measurements were performed during engine dynamometer testing of an International DT 466E heavy-duty diesel engine. Fuels tested in the study were Diesel Fuel 1 and 2, low sulfur diesel (150 ppm), two ultralow sulfur fuels (<30 ppm), Fischer-Tropsch, Biodiesel, PuriNOx™ and two Ethanol-Diesel blends. Configurations tested were: engine out, and diesel oxidation catalyst, continuously regenerating diesel filter, and exhaust gas recirculation aftertreatment. In general, the use of more aggressive aftertreatment (ie.
X