Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

A Study on PCCI Combustion Control in Medium Speed Dual-Fuel Engine

2019-12-19
2019-01-2176
To achieve simultaneous reduction of CO2 and NOx emission from the Dual-Fuel (DF) engine using natural gas and diesel fuel, Premixed Charge Compression Ignition (PCCI) type combustion is a promising technology. However, to apply this technology to the practical operation of the DF engine, combustion control is key challenge because the ignition of PCCI type combustion is governed by chemical reaction of natural gas/air and diesel fuel premixture and not controlled by direct control parameter such as spark timing of spark-ignition natural gas engine or diesel fuel injection timing of micro-pilot type DF engine. The focus of this study is to understand the effect of engine control parameters on DF-PCCI combustion characteristics to establish the combustion control strategy in medium speed DF engine. Engine experiments using a 4-stroke medium speed single cylinder engine were carried out. Firstly, early two stage diesel pilot injection was applied to realize DF-PCCI combustion.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
X